Abstract:
A collision protection system for protecting a pedestrian that uses a sensor that provides a width output signal that varies in relation to the width of an object contacting the vehicle. The sensor includes a resistive conductor that is shorted out by a conductive conductor of a portion of the length of the resistive conductor. A second sensor may be provided that provides an output only upon exceeding an impact threshold. Several sensors may be used to provide an indication of the location and width of the object contacted.
Abstract:
A brake fluid pressure relief assembly (50) for a brake system (10) including a pedal assembly (12) employs first and second valves (52, 54) to provide controlled collapse of a brake pedal pad (14) when both a predetermined deceleration limit is exceeded and a predetermined pressure level is exceeded in a hydraulic brake fluid. The first valve (52) is actuated by an inertial mass (84) acting against a first spring (86). With the first valve in the open position, hydraulic fluid passes into a reservoir (68) whose volume is a dependent on the position of the second valve (54). The second valve (54) opens when the fluid pressure in the reservoir exceeds a predetermined pressure limit and compresses a piston (100) against a second spring (114). Accordingly, the forces that can be communicated through the pedal system 10 are reduced during a collision.
Abstract:
A passive automatic overhead door system (10) which automatically activates a remote door operating device (17) through communication with a global positioning system (18). A vehicle (12) equipped with a GPS receiver (14) and a GPS controller (16) is capable of communicating information to automatically activate a remote door operating device (17) based on predefined vehicle locations and predefined travel directions stored in the GPS controller (16). After programming the GPS controller (16) through a user interface (19) located on board the vehicle (12), there is no further action required from a vehicle's operator in order to activate the remote door operating device (17).
Abstract:
An electromechanically actuated valve (12) for use as an intake or exhaust valve in an internal combustion engine. The valve (12) is actuated by a electromechanical actuator assembly (18) which includes a first electromagnet (22), second electromagnet (30) and third electromagnet (32). A disk (38) is fixedly mounted to the valve (12) in a gap between the second and third electromagnets. The second electromagnet (30) is slidable between the first electromagnet (22) and a stop (42), allowing the gap between the second electromagnet (30) and the third electromagnet (32) to vary. This allows for multiple valve lifts. A second spring (50), mounted between the second electromagnet (30) and disk (38), and a third spring (32), mounted between the disk (44) and an actuator housing (20), create a balanced oscillatory system which drives most of the valve movement during engine operation, thus reducing power requirements to actuate the valves while increasing the responsiveness of the valves.
Abstract:
A method of deploying a passenger side airbag as a function of the actual mass of the occupant on the passenger seat. This is accomplished by providing force sensors at one or more of the anchor pieces at which a seat belt is connected to the vehicle. The sensors may be strain gauges that measure the deflection of bolts connecting the ends of the seat belt to the anchor pieces. By sizing the nominal resistance of strain gauges at two anchor pieces, the two resistors can be put in a series circuit such that only the sum of the two resistances need be measured. The measurements obtained are then used to obtain the vertical components of force due to the seat belt. This value is then be subtracted from the total vertical force measured by a seat cushion weight sensor to determine the mass of the seat occupant.
Abstract:
A guideway system for conveying vehicles includes a first guideway lane and a plurality of control cells. Each cell includes a particular portion of the first guideway lane and a cell:controller for monitoring and controlling traffic flow on the first guideway lane portion within the respective cell. Furthermore, the cell controllers are in communication with each other so as to share information with each other.
Abstract:
An apparatus and a method of making an automatic temperature compensating gas spring strut, the method comprising providing an outer cylinder having opposite ends with one end closed and the other end apertured to permit movement of the strut therethrough; nesting an inner cylinder within the outer cylinder with radial space therebetween, the inner cylinder being apertured at opposite ends; partitioning the space between said cylinders into a first chamber adjacent the closed end of the outer cylinder and a second chamber remote from such closed end; inserting a piston in sliding, sealing relation with the interior of the inner cylinder, the piston having a piston rod extending from said piston and sealingly out through the aperture of the outer cylinder; after injecting a high pressure, non-condensing gas in the first chamber, inserting a measured quantity of solid carbon dioxide (“dry ice”) in the second chamber at ambient conditions and closing said second chamber while sealingly allowing movement of said piston rod therethrough; and allowing the dry ice to sublime to create a condensable high pressure gas within said second chamber that is effective to exert a force on said piston rod that varies with ambient temperature conditions in the range of −40° C. to +80° C.
Abstract:
A method is provided for optimizing energy dissipation in a vehicle steering column in a high energy impact. The method includes the steps of: (a) providing a variable energy dissipation system on the vehicle steering column; (b) sensing at least one occupant condition; and (c) adjusting the variable energy dissipation system based upon the sensed occupant condition to optimize energy dissipation.
Abstract:
A hydraulic lash adjuster mechanism for an internal combustion engine, the adjuster having a body having a bore formed therein with a piston slidingly received within the bore. The lash adjuster is in communication with one end of a cam follower that is in communication at its other end with a valve stem. A rotating cam contacts said cam follower to apply force to the piston during a valve lift event. The lash adjuster has a low pressure chamber formed in the piston and a high pressure chamber formed between the bottom of the bore and the bottom of the piston. Engine fluid that is passed to the low pressure chamber is in communication with the high pressure chamber through a valve opening. A mechanism selectively opens or closes the valve opening in response to pressure differences between the low pressure chamber and the high pressure chamber. An actuating means is included for allowing free leak down of engine fluid from the high pressure chamber to the low pressure chamber when the cam follower is on the cam base circle.
Abstract:
An electromechanically actuated valve (12) for use as an intake or exhaust valve in an internal combustion engine. The valve (12) is actuated by a electromechanical actuator assembly (18) which includes a first electromagnet (22), second electromagnet (30) and third electromagnet (32). A first disk (38) is slidably mounted to the valve (12) in a gap between the first and second electromagnets with first and second stop members (39, 41) limiting its travel along the valve stem (15). A third spring (52) biases the first disk (38) toward the first stop (39). The gap between the first and second stops (39, 41) is large enough to allow for manufacturing tolerances and temperature changes, with a third spring (52) acting to create soft landings. A second disk (44) is slidably mounted to the valve (12) above the third electromagnet (32) with a third stop member (40) limiting its travel toward the first disk (38). With the valve (12) being in a closed position, the gap between the first disk (38) and the first electromagnet (22) is greater than the gap between the second disk (44) and third electromagnet (32), allowing for multiple valve lifts. A first spring (48), mounted between the cylinder head (14) and first disk (38), and a second spring (50), mounted between the second disk (44) and an actuator housing (20), create an oscillatory system which drives the valve movement during engine operation, thus reducing power requirements to actuate the valves.