Abstract:
A method for providing 11C-labeled cyanides from 11C labeled oxides in a target gas stream retrieved from an irradiated high pressure gaseous target containing O2, wherein 11C labeled oxides are reduced with H2 in the presence of a nickel catalyst under a pressure and a temperature sufficient to form a product stream comprising at least about 95% 11CH4, the 11CH4 is then combined with an excess of NH3 in a carrier/reaction stream flowing at an accelerated velocity and the combined 11CH4 carrier/reaction stream is then contacted with a platinum (Pt) catalyst particulate supported on a substantially-chemically-nonreactive heat-stable support at a temperature of at least about 900° C., whereby a product stream comprising at least about 60% H 11CN is provided in less than 10 minutes from retrieval of the 11C labeled oxide.
Abstract:
A method for providing 11C-labeled cyanides from 11C labeled oxides in a target gas stream retrieved from an irradiated high pressure gaseous target containing O2, wherein 11C labeled oxides are reduced with H2 in the presence of a nickel catalyst under a pressure and a temperature sufficient to form a product stream comprising at least about 95% 11CH4, the 11CH4 is then combined with an excess of NH3 in a carrier/reaction stream flowing at an accelerated velocity and the combined 11CH4 carrier/reaction stream is then contacted with a platinum (Pt) catalyst particulate supported on a substantially-chemically-nonreactive heat-stable support at a temperature of at least about 900° C., whereby a product stream comprising at least about 60% H11CN is provided in less than 10 minutes from retrieval of the 11C labeled oxide.
Abstract:
A handling and processing apparatus for preparing Oxygen-15 labeled water (H.sub.2 [.sup.15 O]) in injectable form for use in Positron Emission Tomography from preferably H.sub.2 [.sup.15 O] produced by irradiating a flowing gas target of nitrogen and hydrogen. The apparatus includes a collector for receiving and directing a gas containing H.sub.2 [.sup.15 O] gas and impurities, mainly ammonia (NH.sub.3) gas into sterile water to trap the H.sub.2 [.sup.15 O] and form ammonium (NH.sub.4.sup.+) in the sterile water. A device for displacing the sterile water containing H.sub.2 [.sup.15 O] and NH.sub.4.sup.+ through a cation resin removes NH.sub.4.sup.+ from the sterile water. A device for combining the sterile water containing H.sub.2 [.sup.15 O] with a saline solution produces an injectable solution. Preferably, the apparatus includes a device for delivering the solution to a syringe for injection into a patient. Also, disclosed is a method for preparing H.sub.2 [.sup.15 O] in injectable form for use in Positron Emission Tomography in which the method neither requires isotopic exchange reaction nor application of high temperature.
Abstract:
An automated apparatus and method for producing a 68Ga radiopharmaceutical is provided. The apparatus can direct fluid flow through a radiopharmaceutical generator, a vessel in a temperature controlled reactor, and a solid phase extraction cartridge to produce a final radiopharmaceutical product without human intervention under a clean environment.
Abstract:
A method for providing 11C-labeled cyanides from 11C labeled oxides in a target gas stream retrieved from an irradiated high pressure gaseous target containing O2 is provided, wherein 11C labeled oxides are reduced with H2 in the presence of a nickel catalyst under a pressure and a temperature sufficient to form a product stream comprising at least about 95% 11CH4 , the 11CH4 is then combined with an excess of NH3 in a carrier/reaction stream flowing at an accelerated velocity and the combined 11CH4 carrier/reaction stream is then contacted with a platinum (Pt) catalyst particulate supported on a substantially-chemically-nonreactive heat-stable support at a temperature of at least about 900 ° C., whereby a product stream comprising at least about 60%H11CN is provided in less than 10 minutes from retrieval of the 11C labeled oxide.