Abstract:
Methods are disclosed for making a band-driven package or a band-drive component for a package, and machines for performing the methods. One method comprises feeding first and second flexible webs in a feed direction, one web being fed each side of a substrate such that the webs are in mutual face-to-face disposition ahead of and behind the substrate with respect to the feed direction; joining the face-to-face webs at a first join ahead of the substrate and at a second join behind the substrate, the joins bounding web portions that together encircle the substrate between the joins; and dividing the joined web portions from the remainder of the webs such that the joined web portions together define a band that encircles the substrate, to be slid around the substrate in use of the package.
Abstract:
An inhaler for delivering a metered dose of a medicament, the inhaler comprising a dispensing port (15) and one or more containers (1, 2) holding a combination of a first drug and a second drug; wherein the first drug is for treatment of a physiological condition, and the second drug is a motivational substance; the inhaler including an actuator and a metered dispenser (3) for delivery when actuated of a predetermined dose of the first and second drugs to a patient by inhalation through the dispensing port (5).
Abstract:
Methods are disclosed for making a band-driven package or a band-drive component for a package, and machines for performing the methods. One method comprises feeding first and second flexible webs in a feed direction, one web being fed each side of a substrate such that the webs are in mutual face-to-face disposition ahead of and behind the substrate with respect to the feed direction; joining the face-to-face webs at a first join ahead of the substrate and at a second join behind the substrate, the joins bounding web portions that together encircle the substrate between the joins; and dividing the joined web portions from the remainder of the webs such that the joined web portions together define a band that encircles the substrate, to be slid around the substrate in use of the package.
Abstract:
Methods are disclosed for making a band-driven package or a band-drive component for a package, and machines for performing the methods. One method comprises feeding first and second flexible webs in a feed direction, one web being fed each side of a substrate such that the webs are in mutual face-to-face disposition ahead of and behind the substrate with respect to the feed direction; joining the face-to-face webs at a first join ahead of the substrate and at a second join behind the substrate, the joins bounding web portions that together encircle the substrate between the joins; and dividing the joined web portions from the remainder of the webs such that the joined web portions together define a band that encircles the substrate, to be slid around the substrate in use of the package.
Abstract:
Aerosol collectors 10, 120 include pre-collection filters 100, 126, aerosol collection chambers 30, 130, and other exhaled breath conditioning and control features for providing not only accurate and efficient, but also reliable and reproducible aerosol collections that can be used in standardizations and can be compared in meaningful ways to other exhaled breath aerosol collections from the same test subject and from different test subjects. The aerosol collector 10 example includes electrostatic collection components 34, 40, and the aerosol collector 120 includes nucleating condensation components 168, 172 and vortex collection components 132, 138. Both include analyte extraction apparatus 50, 124.
Abstract:
A method for the detection of microorganisms in a sample comprising contacting said sample with a biosensor concentration module, allowing microorganisms to grow for a first period of time and detecting growth of discrete microorganisms as an indication of the presence of said microorganisms.
Abstract:
Aerosol collectors 10, 120 include pre-collection filters 100, 126, aerosol collection chambers 30, 130, and other exhaled breath conditioning and control features for providing not only accurate and efficient, but also reliable and reproducible aerosol collections that can be used in standardizations and can be compared in meaningful ways to other exhaled breath aerosol collections from the same test subject and from different test subjects. The aerosol collector 10 example includes electrostatic collection components 34, 40, and the aerosol collector 120 includes nucleating condensation components 168, 172 and vortex collection components 132, 138. Both include analyte extraction apparatus 50, 124.
Abstract:
Aerosol collectors 10, 120 include pre-collection filters 100, 126, aerosol collection chambers 30, 130, and other exhaled breath conditioning and control features for providing not only accurate and efficient, but also reliable and reproducible aerosol collections that can be used in standardizations and can be compared in meaningful ways to other exhaled breath aerosol collections from the same test subject and from different test subjects. The aerosol collector 10 example includes electrostatic collection components 34, 40, and the aerosol collector 120 includes nucleating condensation components 168, 172 and vortex collection components 132, 138. Both include analyte extraction apparatus 50, 124.
Abstract:
The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
Abstract:
Methods are disclosed for making a band-driven package or a band-drive component for a package, and machines for performing the methods. One method comprises feeding first and second flexible webs in a feed direction, one web being fed each side of a substrate such that the webs are in mutual face-to-face disposition ahead of and behind the substrate with respect to the feed direction; joining the face-to-face webs at a first join ahead of the substrate and at a second join behind the substrate, the joins bounding web portions that together encircle the substrate between the joins; and dividing the joined web portions from the remainder of the webs such that the joined web portions together define a band that encircles the substrate, to be slid around the substrate in use of the package.