Abstract:
A dental curing light includes a body, one or more LEDs configured to emit a first spectrum of light having a relatively short first peak wavelength (e.g., UV) disposed on the body, and a fluorescing lens that converts at least a portion of the first spectrum of light into a second spectrum of light having a second peak wavelength that is longer than the first peak wavelength. The second spectrum of light is selected so as to match the curing spectrum of a desired light-curable dental composition. In a preferred embodiment, the body comprises an elongate wand having a proximal end and distal end. The LEDs may be disposed at or near the distal end of the elongate wand.
Abstract:
A dental curing light including a body defining a housing, at least one light generating device disposed on or within the housing, and a power source comprising at least one capacitor disposed within the housing for providing power to the at least one light generating device. The power source may comprise a plurality of capacitors that may be wired in parallel, series, or various combinations thereof.
Abstract:
A dental curing light includes a body, one or more LEDs configured to emit a first spectrum of light having a relatively short first peak wavelength (e.g., UV) disposed on the body, and a fluorescing lens that converts at least a portion of the first spectrum of light into a second spectrum of light having a second peak wavelength that is longer than the first peak wavelength. The second spectrum of light is selected so as to match the curing spectrum of a desired light-curable dental composition. In a preferred embodiment, the body comprises an elongate wand having a proximal end and distal end. The LEDs may be disposed at or near the distal end of the elongate wand.
Abstract:
A dental curing light includes a device body that efficiently conducts heat away from the light emitting diode portion of the curing light. The device body includes a proximal gripping end and a distal head end. The device body is formed from a thermally conductive body material. Excellent heat conduction away from the LED dies is achieved using a thermally conductive layer disposed over the device body. The thermally conductive layer serves as a conduit to quickly conduct heat away from the LED dies for dissipation within the material of the device body In this manner, the material of the device body serves as a highly efficient heat dissipater. The surface area coupling the thermally conductive layer to the device body is sufficiently large that a majority (e g, substantially all) of heat being conducted by the thermally conductive layer is transferred to the device body during operation of the device.
Abstract:
A dental curing light including an elongate wand having a proximal end and a distal end, a plurality of LEDs disposed at or near a distal end of the elongate wand and a printed circuit board for mounting the plurality of LEDs. The LEDs include a main through mount LED and a plurality of surface mount LEDs positioned around the main through mount LED. The main LED is through mounted relative to the printed circuit board such that the power connections of the main through mount LED are made through a hole or holes in the printed circuit board. The power connections of the main through mount LED are made on an opposite surface of the printed circuit board relative to the “top” surface to which the surface mount LEDs are mounted.
Abstract:
A dental curing light comprises an elongate hollow wand housing having a proximal first end, a distal second end, a light source disposed at the distal second end of the wand housing, and a heat sink disposed at least partially within the wand housing. The heat sink is in contact with the light source, and comprises a plurality of layers or regions comprising different materials. A first layer or region comprises a first material having a higher thermal conductivity than that of a second layer or region, while the second layer or region comprises a second material having a specific heat greater than that of the first layer or region.
Abstract:
A dental curing light including a body having a housing, one or more light emitting devices disposed on or within the housing, and a light integrator configured to receive light emitted by the at least one light emitting device. The light integrator includes an outer wall defining a hollow reflective internal chamber, an input port through the wall, and an output port through the wall and spaced apart from the input port. Light is received by the light integrator through the input port and into the diffusely reflective internal chamber such that the received light is reflected in many directions and a plurality of times within the internal chamber before being emitted through the output port. Light exiting the output port of the light integrator is such that the intensity of any given wavelength emitted is substantially equally distributed across the entire footprint of emitted light.
Abstract:
A dental curing light includes a device body that efficiently conducts heat away from the light emitting diode portion of the curing light. The device body includes a proximal gripping end and a distal head end. The device body is formed from a thermally conductive body material. Excellent heat conduction away from the LED dies is achieved using a thermally conductive layer disposed over the device body. The thermally conductive layer serves as a conduit to quickly conduct heat away from the LED dies for dissipation within the material of the device body In this manner, the material of the device body serves as a highly efficient heat dissipater. The surface area coupling the thermally conductive layer to the device body is sufficiently large that a majority (e g, substantially all) of heat being conducted by the thermally conductive layer is transferred to the device body during operation of the device.
Abstract:
A dental curing light including an elongate wand having a proximal end and a distal end, a plurality of LEDs disposed at or near a distal end of the elongate wand and a printed circuit board for mounting the plurality of LEDs. The LEDs include a main through mount LED and a plurality of surface mount LEDs positioned around the main through mount LED. The main LED is through mounted relative to the printed circuit board such that the power connections of the main through mount LED are made through a hole or holes in the printed circuit board. The power connections of the main through mount LED are made on an opposite surface of the printed circuit board relative to the “top” surface to which the surface mount LEDs are mounted.