Abstract:
A composition which provides stain resistance and soil resistance to substrates comprising a copolymer of Formula 1 wherein D is at least one vinyl monomer selected from the group consisting of aryl olefin, vinyl ether, allyl ether, alpha olefin and diene; each M is independently H, NH4, Ca, Mg, Al, or a Group I metal; R is H, a C1-C16 alkyl group, or an arylalkyl group; Rf is a fully fluorinated straight or branched C2 to C20 aliphatic radical, or mixture thereof, which is optionally interrupted by at least one oxygen atom; x is 1 to about 10, or a mixture thereof; k and h are each independently a positive integer; i and j are each independently zero or a positive integer, provided that i and j are not both simultaneously zero; the molar ratio of k to (h+i+j) is from about 3:1 to about 1:3, and the molar ratio of h to (i+j) is from about 1:99 to about 22:78 is disclosed.
Abstract:
A hyperbranched polymer having pendent olefinic groups and comprising polymer units derived from one or more terminally-unsaturated, acyclic aliphatic diene and polymer units derived from maleic anhydride. Optionally, the hyperbranched polymer may further comprise polymer units derived from one or more 1-alkenes and/or a chain transfer agent. A process to prepare the hyperbranched polymer comprises contacting maleic anhydride with at least one terminally unsaturated acyclic aliphatic diene having at least 7 carbon atoms in the presence of an effective amount of a radical initiator in an aprotic solvent under dilute conditions.
Abstract:
A process that can be used for sulfonating, sulfating, or sulfamating an organic compound is disclosed. The process can comprise, consist essentially of, or consist of, contacting the organic compound with sulfur trioxide under a condition sufficient to effect the sulfonation, sulfation, or sulfamation of the organic compound. The organic compound can be an aromatic compound, alcohol, carbohydrate, amine, amide, protein, or combinations of two or more thereof. The sulfur trioxide can be present in a complex comprising an inorganic support such as zeolite, silicalite, silica, titanosilicate, borosilicate, clay, aluminophosphate, and combinations of two or more thereof.
Abstract:
A containment assembly for storing a liquid substance above a ground support surface has an inner tank for receiving and storing the liquid and an outer tank surrounding the inner tank and forming a first air space therebetween for trapping any of the liquid which might escape said inner tank. A support beneath the outer tank provides a second air space between the outer tank and the ground support surface, and a thermal insulating layer substantially envelopes the inner tank, outer tank and support from the ambient. A vapour exhaust vent is provided atop the inner tank, which may include a liquid scrubber for recovering liquids from discharging gases and returning the liquids to the inner tank or elsewhere. Piping is provided for liquid communication between the inner tank and external liquid sources for filling and emptying the inner tank. Instrumentation for measuring the amount of liquid in the inner tank includes a shut-off mechanism for stopping the flow of liquid through the piping to the inner tank when the liquid reaches a pre-set level in the tank. A detector accesses the first air space for detecting liquid leakage from the inner tank. Air exchange is promoted between the first and second air spaces by a plurality of open ended standpipes spaced about the first air space and in air communication with the second air space. A heater is preferably provided for forcing heat into the second air space, the heat being distributed through an the standpipes into the first air space and about the inner tank. A second inner tank may be located beneath the outer tank for liquid storage, and may be partitioned for handling selected liquids.
Abstract:
A process for the preparation of a thiol comprising reacting hydrogen with a thiocyanate or disulfide wherein the reaction with thiocyanate is conducted in the presence of a catalyst comprising a Group VIII metal or a mixture thereof; and the reaction with thiocyanate or with disulfide is conducted in the presence of a catalyst comprising a Group VIII metal or mixture thereof in the presence of a modifier metal selected from a group consisting of Group IB, Group IIB, Group IIIA, Group IVA, Group VA and Group VIA metal or mixture thereof, said catalyst being on a porous insoluble support.
Abstract:
An improved process for producing perfluoroalkyl iodides of formula (I) F(CF2CF2)n—I (I) wherein n is an integer from 2 to 3, wherein the improvement comprises contacting at least one perfluoroalkyl iodide of formula (II) and at least one perfluoroalkyl iodide of formula (III) F(CF2CF2)m—I (II) F(CF2CF2)p—I (III) wherein m is an integer greater than or equal to 3, and p is an integer equal to or lower than 2, at a) a molar ratio of formula (III) to formula (II) of from about 1:1 to about 6:1, b) a residence time of from about 1 to about 9 seconds, and c) a temperature of from about 450° C. to about 495° C.
Abstract:
An improved process for producing perfluoroalkyl iodides of formula (I) F(CF2CF2)n—I (I) wherein n is an integer from 2 to 3, wherein the improvement comprises contacting at least one perfluoroalkyl iodide of formula (II) and at least one perfluoroalkyl iodide of formula (III) F(CF2CF2)m—I (II) F(CF2CF2)p—I (III) wherein m is an integer greater than or equal to 3, and p is an integer equal to or lower than 2, at a) a molar ratio of formula (III) to formula (II) of from about 1:1 to about 6:1, b) a residence time of from about 1 to about 9 seconds, and c) a temperature of from about 450° C. to about 495° C.
Abstract:
A hyperbranched polymer having pendent olefinic groups and comprising polymer units derived from one or more terminally-unsaturated, acyclic aliphatic diene and polymer units derived from maleic anhydride. Optionally, the hyperbranched polymer may further comprise polymer units derived from one or more 1-alkenes and/or a chain transfer agent. A process to prepare the hyperbranched polymer comprises contacting maleic anhydride with at least one terminally unsaturated acyclic aliphatic diene having at least 7 carbon atoms in the presence of an effective amount of a radical initiator in an aprotic solvent under dilute conditions.
Abstract:
Stain resistant composition comprises a hyperbranched polymer having pendent olefinic groups and comprising polymer units derived from one or more terminally-unsaturated, acyclic aliphatic diene and polymer units derived from maleic anhydride. Optionally, the hyperbranched polymer may further comprise polymer units derived from one or more 1-alkenes and/or a chain transfer agent. A method to provide stain resistance to a substrate comprises applying the stain resistant composition to said substrate. Suitable substrates include textiles and hard surfaces.