Abstract:
The invention relates to genetically engineered plant-colonizing microorganisms which proliferate in symbiotic or non-detrimental relationships with the plant in the plant environment. Such microorganisms contain DNA derived from Bacillus thuringiensis which codes for the insecticidal crystal protein toxin. The engineered plant-colonizing microorganisms of the invention and their progency are active against a variety of lepidopterous pests. The invention further relates to the use of such plant-colonizing microorganisms in a method of killing or inhibiting lepidopterous pests and to insecticidal compositions containing the plant-colonizing microorganism as the active insecticidal agent.
Abstract:
The present invention provides nucleotide sequences encoding an insecticidal protein exhibiting lepidopteran inhibitory activity, as well as a novel insecticidal protein referred to herein as a Cry1A.105 insecticide, transgenic plants expressing the insecticide, and methods for detecting the presence of the nucleotide sequences or the insecticide in a biological sample.
Abstract:
A method for producing genetically transformed plants exhibiting toxicity to Coleopteran insects is disclosed. In another aspect, the present invention embraces chimeric plant genes, genetically transformed cells and differentiated plants which exhibit toxicity to Coleopteran insects. In yet another aspect, the present invention embraces bacterial cells and plant transformation vectors comprising a chimeric plant gene encoding a Coleopteran toxin protein of Bacillus thuringiensis.
Abstract:
The invention relates to genetically engineered plant-colonizing microorganisms which prolife-rate in symbiotic or non-detrimental relationships with the plant in the plant environment. Such microorganisms contain DNA derived from Bacillus thuringiensis which codes for the insecticidal crystal protein toxin. The engineered plant-colonizing microorganisms of the invention and their progeny are active against a variety of lepidopterous pests. The invention further relates to the use of such plant-colonizing microorganisms in a method of killing or inhibiting lepidopterous pests and to insecticidal compositions containing the plant-colonizing microorganism as the active insecticidal agent.
Abstract:
A method for producing genetically transformed plants exhibiting toxicity to Coleopteran insects is disclosed. In another aspect, the present invention embraces chimeric plant genes, genetically transformed cells and differentiated plants which exhibit toxicity to Coleopteran insects. In yet another aspect, the present invention embraces bacterial cells and plant transformation vectors comprising a chimeric plant gene encoding a Coleopteran toxin protein of Bacillus thuringiensis.
Abstract:
A method for modifying structural gene sequences to enhance the expression of the protein product is disclosed. Also disclosed are novel structural genes which encode insecticidal proteins of B.t.k. HD-1, and B.t.k. HD-73.
Abstract:
The invention relates to a plant-colonizing microorganism which has been genetically engineered to integrate into the chromosome of such microorganism, DNA derived from B. thuringiensis coding for protein toxin. The genetically engineered plant-colonizing microorganisms of the invention, and their progeny, proliferate in commensal or non-detrimental relationship with the plant in the plant environment and are insecticidally active against a subspecies of insect pest which are harmful to the plant. The invention further relates to insecticidal compositions containing such plant-colonizing microorganisms as the active insecticidal agent and to a method of using such genetically engineered plant-colonizing microorganisms in a method of killing or inhibiting insect pests.
Abstract:
The present invention provides nucleotide sequences encoding an insecticidal protein exhibiting lepidopteran inhibitory activity, as well as a novel insecticidal protein referred to herein as a Cry1A.105 insecticide, transgenic plants expressing the insecticide, and methods for detecting the presence of the nucleotide sequences or the insecticide in a biological sample.
Abstract:
The present invention provides nucleotide sequences encoding an insecticidal protein exhibiting lepidopteran inhibitory activity, as well as a novel insecticidal protein referred to herein as a Cry1A.105 insecticide, transgenic plants expressing the insecticide, and methods for detecting the presence of the nucleotide sequences or the insecticide in a biological sample.
Abstract:
A method for modifying structural gene sequences to enhance the expression of the protein product is disclosed. Also disclosed are novel structural genes which encode insecticidal proteins of B.t.k. HD-1, B.t.k. HD-73, B.t. tenebrionis, B.t. entomocidus, 2 protein of B.t.k. HD-1, and the coat protein of potato leaf roll virus.