Abstract:
Spent fuel rods from a nuclear reactor are enclosed in a body of copper, the fuel rods being embedded in copper powder in a copper container provided with a copper lid. The container with its contents and lid are then subjected to isostatic compression at a pressure and temperature sufficient to form a coherent dense mass unit of the powder, the container and the lid which embeds the fuel rods. The container can be enclosed in a sealed gas-tight capsule prior to the isostatic compression. A preliminary isostatic compression may be conducted at a lower temperature to effect creep deformation of the container, the lid and the powder.
Abstract:
A method for manufacturing an object of silicon nitride by isostatic pressing of a preformed body of silicon nitride powder utilizing a pressure medium at a temperature sufficiently high to sinter the silicon nitride. The preformed body is subjected to a degassing operation before isostatic pressing. An inner porous layer of a first material and then an outer porous layer of a second material are applied on the preformed powder body. The inner porous layer is transformable, at a temperature below the sintering temperature for silicon nitride, into a pressure medium impermeable layer. The outer porous layer is also transformable into a pressure medium impermeable layer, but at a temperature which is lower than the temperature when the inner porous layer is converted into its pressure medium impermeable form. Thus, the preformed body is first subjected to a degassing and to a heating to the temperature for transforming the outer porous layer into a pressure medium impermeable layer while the inner porous layer is maintained in a porous form. Thereafter the preformed body and the surrounding layers are heated further to the temperature for converting the inner porous layer into its pressure medium impermeable form while a pressure greater than the gas pressure inside the layers is maintained on the outside of the layers. The isostatic pressing of the preformed object is then carried out.
Abstract:
A method of containing spent nuclear fuel or high-level nuclear fuel waste in a resistant material for isolating the fuel or the waste from the environment, includes the provision of an open container and a cover fitting the container opening, with both the container and cover being made of a ceramic material which is given a high density by isostatic hot pressing. The nuclear fuel or the waste is placed in the container, the cover is placed over the opening of the container, and the container with the cover is contained in a gas-tight casing, whereupon the opened container and the cover are joined by isostatic hot pressing into a homogeneous monolithic body within a completely closed space.
Abstract:
Disclosed is an elongated cylindrical furnace that includes a housing which defines an internal pressure chamber. An annular heater is disposed in the chamber in surrounding relationship to a centrally disposed material treatment space and an insulation layer is disposed in surrounding relationship to the heater. An annular gas impermeable wall is disposed in the chamber between the heater and the treatment space to isolate the latter from the space outside the wall where the heater is located. The outer heater space and the inner material treatment space are each provided with a respective source of pressurized gas for pressurization of the furnace to operating pressure. Thus, the amount of pressurized gas in contact with the material undergoing treatment is minimized and limited by the volume of the inner space and contact between gas from the inner space which may have become contaminated by contact with the material undergoing treatment and hard to clean furnace components in the outer space is limited by the presence of the wall. Also disclosed are various means for controlling the relative gas pressures in the inner and outer spaces.
Abstract:
In a press for hydrostatic extrusion which has a prestressed outer supporting member and an inner tube or liner, the end surfaces of the inner tube are inwardly inclined towards its center with an inclination of at least 1:20, and the seal holders which take up forces operating on the seals have inclined end surfaces which make contact with the inclined end surface of the inner tube. The sealing arrangement includes a first sealing ring with a cylindrical inner surface which contacts the punch and the die respectively, and an end surface making contact with the support ring, and a second sealing ring with an outer cylindrical sealing surface which makes contact with the inner tube and an inclined end surface which makes contact with the inclined end surface of the support ring.
Abstract:
A method of manufacturing fiber-reinforced composites from a fibrous material, includes the steps of infiltrating the fibrous material with material from which a matrix is built up; preforming the infiltrated fibrous material into a green body against as shape-imparting body; encapsulating the preformed green body and shape-imparting body; consolidating and sintering the encapsulated green body by means of isostatic pressure sintering into an essentially dense composite body while preventing deformation of the green body with the shape-imparting body; and removing the encapsulated green body and shape-imparting body after isostatic pressure sintering.
Abstract:
An object is manufactured from a powdered ceramic material while using isostatic pressing. The powdered material is thereby supplied with a temporary organic binder and is formed into a preformed powder body (10). A major part of the binder is removed from the preformed powder body by driving off under heating, whereas a minor part of the binder, required for keeping the powder body together, is retained in the powder body. The powder body is provided with a gas-permeable embedding material (14) of glass, the retained minor part of the binder then being removed by additional driving off under heating and preferably by also treating the powder body with the surrounding gas-permeable embedding material with an oxidizing gas. The gas-permeable embedding material is then made gas-impermeable by heating and the preformed powder body, freed from binder, with the surrounding gas-impermeable embedding material is subjected to isostatic pressing.
Abstract:
Disclosed is a method for manufacturing an object of silicon nitride. In the method, a body preformed from silicon nitride is surrounded with a casing which is permeable to gas. Upon heating, the casing is transformed into a layer which is impermeable to a pressure medium which is used during isostatic pressing of the preformed body while a pressure outside the casing is maintained which is at least as high as the pressure of the gas which is present in the pores of the preformed product. After the casing has been made impermeable to the pressure medium and the preformed body has been enclosed therein, the isostatic pressing is carried out while the body is simultaneously sintered.
Abstract:
Composite material comprising a matrix of an alloy of about 64 percent by weight iron and about 36 percent by weight nickel or of a different alloy containing iron and nickel having a coefficient of thermal expansion of at the most 3.10.sup.-6 K.sup.-1 within the temperature range 20.degree. C. to 100.degree. C. and veins of copper, distributed in one direction through the matrix, with the copper and the alloy metallurgically bonded to each other through a boundary layer containing copper and the alloy having a thickness of at the most 5 .mu.m.
Abstract:
Method and apparatus for plastically de-forming material in a high pressure cylinder, the material being pre-formed into a mandrel billet with an attachment portion and a piston at respective opposite ends thereof and interconnected by an intermediate portion having a smaller cross section than the piston. Holder structure releasably mounted within the high pressure cylinder adjacent the pressure chamber retains the mandrel billet and includes securing means at one end for retaining the attachment portion and engagement means at the other end for slidably engaging the piston. Pressurization of the pressure chamber generates an increase in the pressure medium which acts on the transition surface between the intermediate portion and the piston to cause an elongation of the intermediate portion of the mandrel billet.