Abstract:
The present disclosure relates to processes for recovering rare earth elements from various materials. The processes can comprise leaching the at least one material with at least one acid so as to obtain a leachate comprising at least one metal ion and at least one rare earth element, and a solid, and separating the leachate from the solid. The processes can also comprise substantially selectively removing at least one of the at least one metal ion from the leachate and optionally obtaining a precipitate. The processes can also comprise substantially selectively removing the at least one rare earth element from the leachate and/or the precipitate.
Abstract:
The present disclosure relates to processes for recovering rare earth elements from an aluminum-bearing material. The processes can comprise leaching the aluminum-bearing material with an acid so as to obtain a leachate comprising at least one aluminum ion, at least one iron ion, at least one rare earth element, and a solid, and separating the leachate from the solid. The processes can also comprise substantially selectively removing at least one of the at least one aluminum ion and the at least one iron ion from the leachate and optionally obtaining a precipitate. The processes can also comprise substantially selectively removing the at least one rare earth element from the leachate and/or the precipitate.
Abstract:
The invention concerns basic layered lattice compounds of the general formula (I) Me.sup.III.sub.a Me.sup.II.sub.b (Me.sup.IV).sub.c (OH).sub.d O.sub.e A.sup.n.sub.f .times.mH.sub.2 O, a process for producing the same and the use thereof in a halogen-containing resin composition having improved thermal stability, initial coloring and improved color fastness.
Abstract:
The invention concerns a process for producing metal hydroxides with a small specific area in which the metal hydroxide is produced by hydrating a corresponding metal oxide and then treating it under pressure in an autoclave.
Abstract:
The present disclosure relates to processes for recovering rare earth elements from an aluminum-bearing material. The processes can comprise leaching the aluminum-bearing material with an acid so as to obtain a leachate comprising at least one aluminum ion, at least one iron ion, at least one rare earth element, and a solid, and separating the leachate from the solid. The processes can also comprise substantially selectively removing at least one of the at least one aluminum ion and the at least one iron ion from the leachate and optionally obtaining a precipitate. The processes can also comprise substantially selectively removing the at least one rare earth element from the leachate and/or the precipitate.
Abstract:
The present disclosure relates to processes for recovering rare earth elements from various materials. The processes can comprise leaching the at least one material with at least one acid so as to obtain a leachate comprising at least one metal ion and at least one rare earth element, and a solid, and separating the leachate from the solid. The processes can also comprise substantially selectively removing at least one of the at least one metal ion from the leachate and optionally obtaining a precipitate. The processes can also comprise substantially selectively removing the at least one rare earth element from the leachate and/or the precipitate.
Abstract:
Process for producing catalysts for use within hydrogenation, oxidation, dehydration or dehydrogenation processes comprising oxides, in pure or mixed form, or being applied as mixed crystal systems, made of nickel, cobalt and molybdenum, vanadium, tungsten, titanium and chromium, starting with their corresponding aqueous solutions of their respective chlorides, fluorides or nitrates, which afterwards are processed within a pyrohydrolysis plant to gain the oxide powders, of typical specific surfaces areas of 1 to 100 m.sup.2 /g, agglomerate sizes of 1 to 500 microns and mean particle sizes of 20 to 30 microns. The corresponding anions of these salt solutions are transformed during pyrohydrolysis into their respective acids, which can be regained by absorptive means and which thereafter can be returned to a chemical dissolving process to make the salts and solutions for the pyrohydrolysis, which means an economic advantage. A further process comprises the prereduction of these spray roasted oxide powders at high temperatures, up to a maximum of 800.degree. C. The catalytically active constituents also can be made by this process by an in-situ precipitation on an inactive carrier, such as alumina, titaniumdioxide, phosphorpentoxide or also silicates. A further ceramic processing of such spray roasted powders into ceramic parts (pellets, balls, etc.) is possible.