Abstract:
A spring retainer formed from a titanium alloy and comprising a cylinder and a brim formed integrally with the cylinder is disclosed. The brim has on a top thereof a slope formed such that a thickness of the brim decreases radially outwardly.
Abstract:
In a drive system, there is provided a waste heat recovering device forming a Rankine cycle by an evaporator for heating water with waste heat of an internal combustion engine to generate high-pressure vapor, the internal combustion engine being connected to a transmission, a displacement-type expander for converting high-pressure vapor generated by the evaporator to an output with constant torque, a condenser for liquefying low-pressure vapor discharged from the expander, and a feed pump for supplying water liquefied by the condenser to the evaporator. The expander is connected to a power generator/motor via a planetary gear mechanism, and the expander is connected to an output shaft of the internal combustion engine via the planetary gear mechanism and a belt-type continuously variable transmission. A change gear ratio of the belt-type continuously variable transmission is controlled such that a rotational speed of the internal combustion engine and a rotational speed of the expander are matched with each other and are transmitted to the transmission. Hence, it is possible to effectively drive the driven portion by using the output of the expander of the waste heat recovering device.
Abstract:
A connecting rod as a shaft clamping member includes a rod member and cap, each of which has mating faces at circumferentially opposite ends of a semi-circular recess and which are fastened to each other by bolts by matching the opposed mating faces to each other to define a crank pin hole by the two semi-circular recesses. The rod member and the cap are forgings formed from an aluminum alloy and simultaneously produced by forging powder preforms of the rod member and cap in a cavity having the desired shape of the connecting rod. After forging, the opposed mating faces have an infinite number of recesses and projections which are formed from the flow of the material during the forging and which are in a matched and fitted relation to each other. Thus, any misalignment between and in a direction parallel to the mating faces can be prevented to avoid the generation of a situation that only the rod member receives a stress. This achieves a prolongation in the life of the connecting rod of the aluminum alloy. The composition of the most desirable aluminum alloy includes, by weight, 7% .ltoreq.Fe
Abstract:
An aluminum alloy powder or a green compact thereof is prepared, wherein: (1) the composition formula is Al.sub.100-a-b Fe.sub.a X.sub.b where a and b in atomic % are 4.0.ltoreq.a.ltoreq.6.0, 1.0.ltoreq.b.ltoreq.4.0, and where X is at least one alloy element selected from Y and Mm (mish metal); or (2) the composition formula is Al.sub.100-a-b-c Fe.sub.a Si.sub.b X.sub.c, where a, b and c in atomic % are 3.0.ltoreq.a.ltoreq.6.0, 0.5.ltoreq.b.ltoreq.3.0, and 0.5.ltoreq.c.ltoreq.3.0, and where X is at least one alloy element selected from Ti, Co, Ni, Mn and Cr, and wherein both (1) and (2) include an amorphous phase of at least 1% by volume. The aluminum alloy powder or the green compact thereof is heated at a temperature increasing at a rate of at least 80.degree. C./min. to a predetermined temperature of at least 560.degree. C. and not more than a temperature at which 10% by volume of a liquid phase is contained in the alloy powder or green compact. The aluminum alloy powder or the green compact thereof is powder forged at the predetermined temperature. As a result, an aluminum alloy superior in static strength and dynamic strength can be produced.
Abstract:
A process which can make a titanium alloy bolt at ambient temperature is disclosed. A Ti—Fe—O alloy is used as a material. It has a screw thread formed thereon by drawing and rolling.
Abstract:
A raw material for powder metallurgy contains at least 0.5 vol % and at most 10 vol % of alumina powder of which the sieve fraction with a sieve opening of 30 .mu.m is at most 0.1 wt %, and a remaining part of aluminum alloy powder. The moisture content of the alumina powder is at most 0.15 wt. % with respect to the alumina powder. Agglomeration of particles is thereby minimized or avoided. Highly reliable raw material for powder metallurgy having superior fatigue strength, impact resistance and wear resistance can be obtained. A method of preparing such a mixed powder raw material involves air classifying the powder materials, dry ball mixing the materials, and then annealing the mixed powder.
Abstract:
An aluminum alloy structural member is crystalline. In producing this aluminum alloy structural member, a procedure is employed which includes forming a green compact by use of aluminum alloy having an amorphous phase, and subjecting the green compact to a powder forging technique. An aluminum alloy powder exhibiting an exotherm E smaller than 20 J/g at the time of the crystallization of the amorphous phases is used. By setting the exotherm E in such a range, cracking of the green compact due to a degassing can be avoided, even if the green compact is rapidly heated in a temperature-rising or heating course.
Abstract:
A cast magnetic refrigerant having a composition represented byLn.sub.a A.sub.b M.sub.cwherein Ln is at least one element selected from the group consisting of Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb; A is any one of elements of Al and Ga; M is at least one element selected from the group consisting of Fe, Co, Ni, Cu and Ag; each of a, b and c is atomic %, with the proviso that a+b+c=100 atomic %, 20 atomic % .ltoreq.a.ltoreq.80 atomic %, 5 atomic % .ltoreq.b .ltoreq.50 atomic %, 5 atomic % .ltoreq.c.ltoreq.60 atomic %, and having an amorphous structure with a difference .DELTA.T of 10K or more between a glass transition temperature Tg and a crystallization temperature Tx.
Abstract translation:具有由LnaAbMc表示的成分的铸造磁性制冷剂,其中Ln是选自由Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm和Yb组成的组中的至少一种元素; A是Al和Ga的元素中的任何一种; M是选自Fe,Co,Ni,Cu和Ag中的至少一种元素; a,b和c中的每一个是原子%,条件是a + b + c = 100原子%,20原子% = 80原子%,5原子% b = 50 原子%,5原子% = c <60原子%,并且在玻璃化转变温度Tg和结晶温度Tx之间具有10K或更高的差异ΔTA的非晶结构。
Abstract:
Disclosed herein is a process for forming an amorphous alloy material capable of showing glass transition, which comprises holding the material between frames arranged in combination; and heating the material at a temperature between its glass transition temperature (Tg) and its crystallization temperature (Tx) and, at the same time, producing a pressure difference between opposite sides of the material, whereby the material is brought into close contact against a forming mold disposed on one side of the material. As an alternative, the forming mold is brought into close contact against the amorphous material in a direction opposite to the pressing direction for the amorphous material. By the above processes, precision-formed products of amorphous alloys can be manufactured and supplied at low cost. These formed amorphous alloy products can be used as mechanical structure parts and components of high strength and high corrosion resistance, various strength members, electronic parts, arts and crafts, original printing plates, or the like.
Abstract:
Provided is a novel palladium catalyst capable of efficiently purifying carbon monoxide (CO) and total hydrocarbons (THC) under a fuel-rich atmosphere even when palladium (Pd) is used as a catalyst active component. Proposed is a palladium monolayer catalyst for an exhaust gas from a saddle-riding-type vehicle, which is an exhaust gas purification catalyst for a saddle-riding-type vehicle to be installed in an exhaust gas passage in an internal combustion engine. The palladium monolayer catalyst includes a substrate, and a catalyst layer that has the form of a monolayer and contains palladium acting as a catalyst active component, an inorganic porous body acting as a catalyst carrier, ceria (CeO2) particles acting as a promoter component, and barium.