Abstract:
A method for fabricating a semiconductor device is disclosed. In an embodiment, the method may include providing a semiconductor substrate; forming gate material layers over the semiconductor substrate; forming a multi-layer hard mask layer over the gate material layers, wherein the multi-layer hard mask layer includes a plurality of film stacks, each film stack having a silicon oxide layer and a carbon-containing material layer, each film stack having a thickness equal to or less than about 10 angstrom; patterning the multi-layer hard mask layer, forming an opening of the multi-hard mask layer; etching the gate material layers within the opening of the multi-layer hard mask layer, forming a gate structure; performing a tilt-angle ion implantation process to the semiconductor substrate, wherein a first remaining thickness of the multi-layer hard mask layer is less than a first thickness; and thereafter performing an epitaxy growth to the semiconductor substrate, wherein a second remaining thickness of the multi-layer hard mask layer is greater than a second thickness.
Abstract:
Methods and structures for forming a contact hole structure are disclosed. These methods first form a substantially silicon-free material layer over a substrate. A material layer is formed over the substantially silicon-free material layer. A contact hole is formed within the substantially silicon-free material layer and the material layer without substantially damaging the substrate. In addition, a conductive layer is formed in the contact hole so as to form a contact structure.
Abstract:
A method for preventing the formation of contaminating polymeric films on the backsides of semiconductor substrates includes providing an oxygen-impregnated focus ring and/or an oxygen-impregnated chuck that releases oxygen during etching operations. The method further provides delivering oxygen gas to the substrate by mixing oxygen in the cooling gas mixture, maintaining the focus ring at a temperature no greater than the substrate temperature during etching and cleaning the substrate using a two step plasma cleaning sequence that includes suspending the substrate above the chuck.
Abstract:
A method of forming an integrated circuit is provided. The method includes performing a multiple-time flash anneal process to a wafer, wherein the multiple-time flash anneal process comprises preheating the wafer to a first preheat temperature; performing a first flash on the wafer with a first flash energy; preheating the wafer to a second preheat temperature; and performing a second flash on the wafer with a second flash energy.
Abstract:
A semiconductor device is disclosed that includes: a substrate; a first high-k dielectric layer; a second high-k dielectric layer formed of a different high-k material; and a metal gate. In another form, a method of forming a semiconductor device is disclosed that includes: providing a substrate; forming a first high-k dielectric layer above the substrate; forming a second dielectric layer of a different high-k material above the first dielectric layer; and forming a gate structure above the second dielectric layer. In yet another form, a method of forming a semiconductor device is disclosed that includes: providing a substrate; forming an interfacial layer above the substrate; forming a first high-k dielectric layer above the interfacial layer; performing a nitridation technique; performing an anneal; forming a second high-k dielectric layer of a different high-k material above the first dielectric layer; and forming a metal gate structure above the second dielectric layer.
Abstract:
Provided is a semiconductor device including a substrate. A gate formed on the substrate. The gate includes a sidewall. A spacer formed on the substrate and adjacent the sidewall of the gate. The spacer has a substantially triangular geometry. A contact etch stop layer (CESL) is formed on the first gate and the first spacer. The thickness of the CESL to the width of the first spacer is between approximately 0.625 and 16.
Abstract:
Via hole and trench structures and fabrication methods are disclosed. The structure includes a conductive layer in a dielectric layer, and a via structure in the dielectric layer contacting a portion of a surface of the conductive layer. The via structure includes the conductive liner contacting the portion of the surface of the first conductive layer. A trench structure is formed on the via structure in the dielectric without the conductive liner layer in the trench.
Abstract:
A method for fabricating a semiconductor device is disclosed. The method includes providing a first chamber and a second chamber. The first chamber and the second chamber are connected by a pressure differential unit, for depositing a metallic film over a substrate in the first chamber, transferring the substrate to the second chamber via the pressure differential unit without exposing the substrate to the ambient environment, and depositing a silicon-containing film on the metallic film in the second chamber.
Abstract:
A method of forming tensile stress films for NFET Performance enhancement, comprising the steps of: (a) providing a semiconductor substrate having a gate structure patterned thereon; (b) performing a deposition process to form a first dielectric film overlying the semiconductor substrate and covering the gate structure; (c) performing a curing process on the first dielectric film; (d) successively repeating the step (b) of deposition process and the step (c) of curing process at least once to form at least one second dielectric film on the first dielectric film until the total thickness of the first dielectric film and the at least one second dielectric film reaches a target thickness.
Abstract:
Semiconductor devices with dual-metal gate structures and fabrication methods thereof. A semiconductor substrate with a first doped region and a second doped region separated by an insulation layer is provided. A first metal gate stack is formed on the first doped region, and a second metal gate stack is formed on the second doped region. A sealing layer is disposed on sidewalls of the first gate stack and the second gate stack. The first metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a first metal layer on the high-k dielectric layer, a metal insertion layer on the first metal layer, a second metal layer on the metal insertion layer, and a polysilicon layer on the second metal layer. The second metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a second metal layer on the high-k dielectric layer, and a polysilicon layer on the second metal layer.