Abstract:
A method for preparing an epoxide is disclosed. The method for preparing an epoxide includes the step of performing a reaction of an alkene and oxidant in the presence of a Ti—Si molecular sieve as a catalyst, and increases the conversion rate of hydrogen peroxide and the yield of the epoxide.
Abstract:
A method for preparing an epoxide is disclosed. The method for preparing an epoxide includes the step of performing a reaction of an alkene and oxidant in the presence of a Ti—Si molecular sieve as a catalyst, and increases the conversion rate of hydrogen peroxide and the yield of the epoxide.
Abstract:
An electrostatic speaker and a method for manufacturing the speaker are disclosed. Said speaker comprises a vibrating film; an electrode portion disposed on a surface of the vibrating film and joined with the vibrating film; and a conductive backplate spaced from the electrode portion by a distance, the conductive backplate forming a plurality of holes, the vibrating film being deformed and vibrated to generate and release a sound through the holes due to a variation of an electric field generated between the conductive backplate and the electrode portion, wherein the conductive backplate is covered by a polymer layer serving as a protective film. The covering polymer layer on the conductive backplate is capable of improving the stability of the electrostatic speaker and increasing its lifespan.
Abstract:
A ruthenium complex having a chemical formula of RuL1L2X is provided. The chemical formula includes a structural formula represented by the following Formula (I): in which, X is a monodentate anion ligand, L1 and L2 respectively represent a heterocyclic tridentate ligand with a structure shown in the following structural formula (II): and a bipyridine ligand derivative with a structure shown in the following structural formula (III): in which R1, R2, R4 and R5 of L1 and L2 are the same or different substituents and represent alkyl, alkoxy, aminoalkyl, haloalkanes or substituted phenyl group, carboxylic acid group or acid radical salt thereof, sulfonic acid group or acid radical salt thereof, phosphoric acid group or acid radical salt thereof or hydrogen atom. R3 represents perhalogenated alkyl group, alkoxy, alkyl, amino, halogens, or hydrogen atom. The ruthenium complexes are suitable for being used as dye-sensitizers for fabricating dye-sensitized solar cells.
Abstract:
An electrostatic speaker and a method for manufacturing the speaker are disclosed. Said speaker comprises a vibrating film; an electrode portion disposed on a surface of the vibrating film and joined with the vibrating film; and a conductive backplate spaced from the electrode portion by a distance, the conductive backplate forming a plurality of holes, the vibrating film being deformed and vibrated to generate and release a sound through the holes due to a variation of an electric field generated between the conductive backplate and the electrode portion, wherein the conductive backplate is covered by a polymer layer serving as a protective film. The covering polymer layer on the conductive backplate is capable of improving the stability of the electrostatic speaker and increasing its lifespan.
Abstract:
A ruthenium complex is provided. The ruthenium complex is represented by the following Formula (I): in which, X is a monodentate anion ligand, R1, R2, R4 and R5 are the same or different substituents and represent alkyl, alkoxy, aminoalkyl, haloalkanes or substituted phenyl group, carboxylic acid group or acid radical salt thereof, sulfonic acid group or acid radical salt thereof, phosphoric acid group or acid radical salt thereof or hydrogen atom. R3 represents perhalogenated alkyl group, alkoxy, alkyl, amino, halogens, or hydrogen atom. The ruthenium complexes are suitable for being used as dye-sensitizers for fabricating dye-sensitized solar cells.