Abstract:
The invention relates to a microfluidic system comprising a microfluidic device having a first and a second opposite surfaces and an optical detector, the microfluidic device comprises a flow channel with a detection channel section having a length of at least about 1 mm, the microfluidic device comprises at least one aperture section comprising at least a part of said detection channel section and a transparent window into said detection channel section, the optical detector is arranged to be in optical communication with said aperture section to determining at least one optical property of said aperture section as a function of time. The flow channel may have capillary dimensions and/or it may wholly or fully be arranged to drive a fluid flow by applying external forces.The optical detector may preferably be arranged to transmit light onto the aperture section and to detect a light transmission from the aperture section, wherein the light transmission from the aperture section being selected from light transmitted through the sample, reflectance scattering of light, transmittance scattering of light and any combinations thereof.The microfluid device may be used to determine various properties of a sample fluid, for example it may be used to determine a samples coagulation properties and/or reactions of one or more components in a fluid sample as a function of time.
Abstract:
The invention relates to a flow through system for quantifying a target component in a liquid. The flow through system comprises a flow-through device comprising a flow path comprising a marker section, a capture section downstream to said marker section, and at least two quantification sections. The marker section comprises a non-immobilized marker. The capture section comprises a capture zone with an immobilized capture agent, and the at least two quantification sections comprise a pre-capture quantification section placed downstream to the marker section and up stream to the capture section, and a post-capture quantification section placed downstream to the capture section. The system further comprises a quantification unit for each of said quantification sections. The quantification unit(s) being arranged to quantify marker containing components and/or particles passing through said respective quantification sections. The invention also relates to a flow through device for such flow through system and a method of determining the amount of target component in a liquid using a flow through system.
Abstract:
The invention relates to a microfluidic system comprising a microfluidic device having a first and a second opposite surfaces and an optical detector, the microfluidic device comprises a flow channel with a detection channel section having a length of at least about 1 mm, the microfluidic device comprises at least one aperture section comprising at least a part of said detection channel section and a transparent window into said detection channel section, the optical detector is arranged to determine at least one optical property of said aperture section as a function of time. The flow channel may have capillary dimensions and/or it may wholly or fully be arranged to drive a fluid flow by applying external forces. The microfluid device may be used to determine various properties of a sample fluid, for example it may be used to determine a samples coagulation properties and/or reactions of one or more components in a fluid sample as a function of time.
Abstract:
Methods and apparatus for lift-off microstructuring deposition material, here alternate hydrophilic (601) and hydrophobic (602) letters, on a substrate; a method comprising deposition of polymeric material by plasma polymerisation deposition of monomers of substituted benzenes, (halo)aliphatic compounds, or a combination thereof; another method comprising deposition of polymeric material by plasma polymerisation deposition of monomers of vinyls, substituted vinyls, acrylics, silanes, and phosphites, or a combination thereof; still another method comprising deposition of polymeric material by plasma polymerisation deposition of monomers wherein said plasma is generated by a multiple phase AC supply, or DC supply; and substrates and devices prepared by lift-off microstructuring using plasma polymerisation deposition of monomers according to such methods. Scale A indicates about 100μ.
Abstract:
The invention relates to a flow through system for quantifying a target component in a liquid. The flow through system comprises a flow-through device comprising a flow path comprising a marker section, a capture section downstream to said marker section, and at least two quantification sections. The marker section comprises a non-immobilized marker. The capture section comprises a capture zone with an immobilized capture agent, and the at least two quantification sections comprise a pre-capture quantification section placed downstream to the marker section and up stream to the capture section, and a post-capture quantification section placed downstream to the capture section. The system further comprises a quantification unit for each of said quantification sections. The quantification unit(s) being arranged to quantify marker containing components and/or particles passing through said respective quantification sections. The invention also relates to a flow through device for such flow through system and a method of determining the amount of target component in a liquid using a flow through system.
Abstract:
A microfluidic device comprising a flow channel with an inlet and a gas escape opening is described. The flow channel comprises a liquid flow channel section and a flow controlling section downstream to the liquid flow channel section and upstream to or coinciding with the gas escape opening. The flow controlling section provides a flow resistance to gas, which is sufficiently high to reduce velocity of a capillary flow of a liquid in the liquid flow channel section.The microfluidic device with the flow controlling section provides a device in which the velocity of the flow can be reduced to a desired level.Also is described a method of performing a test using the microfluidic device.
Abstract:
A method of producing a microfluidic device having at least one flow path may include providing a base substrate with a first surface and a top substrate with a second surface, hydrophilically treating at least one of the first and the second surfaces to provide a surface layer with a higher surface tension than the surface tension prior to the hydrophilic treatment, partly or totally removing the surface layer with a higher surface tension in a selected pattern of the hydrophilically treated first and/or second surfaces, to thereby provide the selected pattern with a lower surface tension than prior to the partly or totally removal of the surface layer with a higher surface tension in said selected pattern of the hydrophilic treated first and/or second surfaces, and joining said base substrate and top substrate to each other to provide a flow path between said first and second surfaces.
Abstract:
A method of joining a workpiece and a microstructure by light exposure, a microstructure obtainable by the method comprising a workpiece joined thereto, means thereto and use thereof; in particular a microstructure-forming composition comprising a light-sensitive, structure-forming material comprising one or more photo resist materials which are sensitive to preferably UV-light, and a light-absorbing material comprising one or more light-absorbing substances absorbing preferably IR light and being in an amount sufficient to produce heat upon exposure to said absorbed light; a microstructure-forming preparation comprising such composition; a method of producing a microstructure on a substrate; and a microstructure obtainable by the method; a method of joining a workpiece and a microstructure, a microstructure obtainable by the method comprising a workpiece joined thereto, e.g. for producing closed micro flow channels in a micro flow system; and use of such a microstructure, e.g. in lab-on-chip applications, in point-of-care systems, in high-through-put screening systems, preferably in systems for screening active compounds in fluids, in particular biological fluids.
Abstract:
A microfluidic device comprising at least one test channel, which test channel comprises an upper test channel section with an upstream end and a sampling region at its upstream end and at least one reference channel, which reference channel comprises an upper reference channel section with an upstream end and a sampling region at its upstream end. The test channel and the reference channel comprise a merging region downstream to the upper test channel section and a common downstream channel section. The merging region and the common downstream channel section are arranged such that a reference liquid flowing from the upper reference channel section into the merging region will block a test liquid flow in the upper test channel section when the test liquid flow has not yet reached the merging section. The microfluid device may be used for detecting change of flow properties e.g. due to agglomeration, agglutination or viscosity change in a liquid preferably selected from water, urine, blood, or blood plasma.
Abstract:
A microfluidic device comprising at least one test channel, which test channel comprises an upper test channel section with an upstream end and a sampling region at its upstream end and at least one reference channel, which reference channel comprises an upper reference channel section with an upstream end and a sampling region at its upstream end. The test channel and the reference channel comprise a merging region downstream to the upper test channel section and a common downstream channel section. The merging region and the common downstream channel section are arranged such that a reference liquid flowing from the upper reference channel section into the merging region will block a test liquid flow in the upper test channel section when the test liquid flow has not yet reached the merging section. The microfluid device may be used for detecting change of flow properties e.g. due to agglomeration, agglutination or viscosity change in a liquid preferably selected from water, urine, blood, or blood plasma.