Abstract:
A device for controlling the level of light in an area or room. The device includes a sensor that detects whether the room is occupied, a light meter that detects the level of ambient light entering the room, and circuitry that controls the lights in the room in response to the sensor and light meter. The controlling circuitry increases the light level in the room when the room is occupied and the light meter senses that the ambient light level is not above a particular level. When the room is unoccupied for a brief period of time, the device increases or decreases the light level of the room by controlling lights accordingly, in response to the level of light sensed by the light meter. And finally, when the room is unoccupied for an extended period of time, the device turns power off to all the lights in the room.
Abstract:
A speed controller for a single phase motor such as a permanent split capacitor motor allows the motor to be operated at a first speed, n1, and a lower speed, n2. High speed motor operation is produced by passing a single phase AC current through both the main and auxiliary windings of the motor. For low speed operation, the controller passes first and second reduced frequency AC waveforms through the motor's auxiliary and main windings, respectively. The first waveform bypasses the motor's auxiliary winding capacitor and is phase shifted 90 degrees from the second AC waveform. A split source capable of generating an AC signal and its inverted signal can be used by the controller to generate the reduced frequency waveforms. Specifically, the controller uses selected half cycles from each split source signal to produce the reduced frequency waveforms.
Abstract:
A control circuit for controlling the light output level of a dimmable fluorescent light ballast such as the Mark VII ballast manufactured by Advance Transformer, Inc. The circuit operates from power supplied by the Mark VII ballast through a 300 to 500 microamp DC current loop. The control circuit includes a photo sensor that detects the level of ambient light in a room, and in response to the detected light level, the circuit sets a voltage level from 2 and 10 volts between the two output leads for the current loop on the ballast. At 2 volts, the light is at its dimmest level, which is 20 percent of its maximum brightness, while at 10 volts, the light is at the 100 percent level. Between 2 and 10 volts, the light's brightness is set on a linear scale between 20 and 100 percent.
Abstract:
In the present invention, a speech activated telephone is disclosed. The speech activated phone stores a plurality of spoken words, the telephone number and the alphanumeric word associated with each spoken word. The telephone automatically dials the telephone number in response to inputted spoken word, matching the stored spoken word. In addition, the telephone number and alphanumeric text for the matched spoken word is displayed.
Abstract:
A sensor for monitoring the status of an alarm system is disclosed. The sensor includes a base station at the location of the alarm system and arranged to respond to an alarm condition. When an alarm occurs, the base station latches the alarm condition and retains it until it is manually reset. A remote station includes a transceiver for interrogating the base station to determine whether an alarm condition has occurred. The remote unit may also be used to arm or disarm the alarm system, and to operate other controllable devices.
Abstract:
In a thermal radiation measuring arrangement, a thermal radiation detector is located at the focal point of a collecting mirror, upon which incident thermal radiation from a surface, such as a building wall, is directed. The thermal radiation detector may be, for example, a thermopile, and provides an output signal having a magnitude proportional to the amount of thermal radiation which it receives. The temperature detection means detects the temperature of the thermal radiation detector and, for example, may detect the cold junction of the thermopile. In a first operating condition, a signal summing means receives the output signal from the thermal radiation detector and the temperature detection means and provides a third output signal proportional to the sum of these first and second output signals. In a second operating condition, a signal biasing means is connected into the signal summing means. The signal biasing means provides a signal to the signal summing means to cause the third output signal to become zero when radiation is received from a reference surface. When the arrangement is in the second operating condition and directed to receive thermal radiation from a second surface different from the reference surface, the signal biasing means maintains the same level of bias to the signal summing means as it did when detecting the radiation from the reference surface.
Abstract:
A control circuit for controlling the light output level of a dimmable fluorescent light ballast such as the Mark VII ballast manufactured by Advance Transformer, Inc. The circuit operates from power supplied by the Mark VII ballast through a 300 to 500 microamp DC current loop. The control circuit includes a photo sensor that detects the level of ambient light in a room, and in response to the detected light level, the circuit sets a voltage level from 2 and 10 volts between the two output leads for the current loop on the ballast. At 2 volts, the light is at its dimmest level, which is 20 percent of its maximum brightness, while at 10 volts, the light is at the 100 percent level. Between 2 and 10 volts, the light's brightness is set on a linear scale between 20 and 100 percent.
Abstract:
A device for controlling power to an electrical load. The device has two components: a portable desktop detector unit and a wall-mounted receiver unit. The desktop detector detects the presence of a human in a room and the ambient light level and sends signals to the receiver unit to supply power to or withhold power from an electrical load such as a fluorescent light and to adjust the brightness of the light. Since the detector is portable, it can be positioned and repositioned at different locations in a room to maximize its ability to detect the presence of a human and to sense the level of ambient light in various room locations. Each detector and receiver pair have matching addresses so that a receiver will operate an electrical load only in response to its mated detector, thus allowing multiple devices to be used to control multiple lights without interfering with each other. The device can also operate with a third component that acts as a master key and controls the maximum brightness, at which lights may be operated.