Abstract:
A deposition system in accordance with one embodiment of the present invention includes a process chamber, a stationary pedestal for supporting a substrate in the process chamber, and a moveable shield forming at least a portion of an enclosure defining the process chamber. Motion of the shield with respect to the stationary pedestal controls a variable gas conductance path for gases flowing through the process chamber thereby modulating the pressure of the process chamber with respect to an external volume. The moveable shield in accordance with an embodiment of the present invention may include several gas channel openings for introducing various process gases into the process chamber. In some embodiments, the moveable shield may alternatively or additionally include an interior cooling or heating channel for temperature control.
Abstract:
A heating apparatus comprising a support base and a microplate having a first surface and an opposing second surface. The microplate is positioned adjacent the support base and comprises a plurality of wells formed in the first surface thereof. Each of the plurality of wells is sized to receive an assay therein. A sapphire crystalline transparent window is positioned adjacent the microplate opposing the support base. A heating device heats the transparent window in response to a control system.
Abstract:
A deposition system includes a process chamber for conducting an ALD process to deposit layers on a substrate. An electrostatic chuck (ESC) retains the substrate. A backside gas increases thermal coupling between the substrate and the ESC. The ESC is cooled via a coolant flowing through a coolant plate and heated via a resistive heater. Various arrangements are disclosed.
Abstract:
A deposition system includes a process chamber for conducting an ALD process to deposit layers on a substrate. In one embodiment, instead of varying the gas flux on a substrate in the chamber by controlling the flow of gas upstream of the process chamber, the gas flux on the substrate is controlled by controlling the conductance between the process chamber and a lower pressure volume outside the process chamber. The flux of the gas on the substrate varies inversely with the chamber conductance, such that the flux of the gas on the substrate increases when the conductance decreases. Various methods of performing an ALD process by controlling the conductance are disclosed as well as various structures for controlling the conductance.
Abstract:
A deposition system in accordance with one embodiment of the present invention includes a process chamber, a stationary pedestal for supporting a substrate in the process chamber, and a moveable shield forming at least a portion of an enclosure defining the process chamber. Motion of the shield with respect to the stationary pedestal controls a variable gas conductance path for gases flowing through the process chamber thereby modulating the pressure of the process chamber with respect to an external volume. The moveable shield in accordance with an embodiment of the present invention may include several gas channel openings for introducing various process gases into the process chamber. In some embodiments, the moveable shield may alternatively or additionally include an interior cooling or heating channel for temperature control.
Abstract:
A method for conducting an ALD process to deposit layers on a substrate which includes an electrostatic chuck (ESC) to retain the substrate. Electrode(s) in the chuck assembly are used to induce a voltage on the substrate to promote precursor adsorption on the substrate.
Abstract:
Exemplary embodiments provide microfludic devices and methods for their use. The microfluidic device can include an array of M×N reaction sites formed by intersecting a first and second plurality of fluid channels of a flow layer. The flow layer can have a matrix design and/or a blind channel design to analyze a large number of samples under a limited number of conditions. The microfluidic device can also include a control layer including a valve system for regulating solution flow through fluid channels. In addition, by aligning the control layer with the fluid channels, the detection of the microfluidic devices, e.g., optical signal collection, can be improved by piping lights to/from the reaction sites. In an exemplary embodiment, guard channels can be included in the microfluidic device for thermal cycling and/or reducing evaporation from the reaction sites.