Abstract:
A robotic vacuum cleaner is disclosed in the present invention, which comprises a controller, at least a driving wheel module, and a dust-collecting module. The controller is disposed on a housing plate. The driving wheel module, electrically connecting to the controller, further includes: a driver; a wheel connecting to the output shaft of the driver; a linkage rod, having two ends pivotally fixed on the housing plate and the driver respectively; and a resilience element, having two ends pivotally connected to the housing plate and the driver respectively. The dust-collecting module, disposed on the housing plate, is capable of vacuuming for filtering and collecting dust.
Abstract:
A centrifugal fan apparatus is disclosed in the present invention. The characteristics of the centrifugal fan apparatus lies in that the width of airflow channel defined between the rim of the impeller and the inner wall of the housing accommodating the impeller is uniform, and two airflow spaces defined between the axial cross section of the impeller and upper housing and lower housing respectively are not symmetry. Due to these two characteristics, the centrifugal fan apparatus is capable of making larger pressure difference to inducing higher flow rate and reducing noise while the centrifugal fan apparatus is operated. The present invention also provides a dust-collecting module that is formed by adopting the centrifugal fan apparatus with a designed dust-collecting casing, which is capable of being a sucker of a vacuum cleaner to collect dust of the surroundings for the purpose of environment cleaning.
Abstract:
A method for predicting surge in a compressor is provided, which is applicable to a cooling apparatus equipped with a centrifugal compressor. A set of highest outlet pressure values is obtained by a performance test performed on the centrifugal compressor. A coolant flow rate value and an opening percentage value of inlet guide vanes of the centrifugal compressor are measured. An outlet pressure value of the centrifugal compressor is calculated with an equation using the measured coolant flow rate value and the measured opening percentage value. The outlet pressure value is compared with one of the highest outlet pressure values corresponding to the measured opening percentage value, and if the outlet pressure value is larger than or equal to the highest corresponding outlet pressure value, it confirms imminent surge in the centrifugal compressor, so as to provide a basis of preparation for surge elimination.
Abstract:
A rotor mechanism of a centrifugal compressor connectable to a power output device and configured to block leakage of lubricants and to recycle lubricants to an oil sump is provided, which includes a rotary shaft with a rolling bearing and a screw nut, a bearing housing for receiving the rolling bearing, and a bearing plate connected to the bearing housing. The screw nut has a surface provided with an oil throw seal, and the bearing housing. As the bearing plate is provided with an oil channel in contact with the oil-returning hole and either one of the bearing housing and the bearing plate is provided with a first labyrinth seal in contact with the screw nut, lubricants leaking out of the rolling bearing is allowed to go to the oil sump via the oil channel and oil-returning hole. The oil slinger thus blocks the lubricants from leaking out of the first labyrinth seal.
Abstract:
A method for predicting surge in a compressor is provided, which is applicable to a cooling apparatus equipped with a centrifugal compressor. A set of highest outlet pressure values is obtained by a performance test performed on the centrifugal compressor. A coolant flow rate value and an opening percentage value of inlet guide vanes of the centrifugal compressor are measured. An outlet pressure value of the centrifugal compressor is calculated with an equation using the measured coolant flow rate value and the measured opening percentage value. The outlet pressure value is compared with one of the highest outlet pressure values corresponding to the measured opening percentage value, and if the outlet pressure value is larger than or equal to the highest corresponding outlet pressure value, it confirms imminent surge in the centrifugal compressor, so as to provide a basis of preparation for surge elimination.
Abstract:
A robotic vacuum cleaner is disclosed in the present invention, which comprises a controller, at least a driving wheel module, and a dust-collecting module. The controller is disposed on a housing plate. The driving wheel module, electrically connecting to the controller, further includes: a driver; a wheel connecting to the output shaft of the driver; a linkage rod, having two ends pivotally fixed on the housing plate and the driver respectively; and a resilience element, having two ends pivotally connected to the housing plate and the driver respectively. The dust-collecting module, disposed on the housing plate, is capable of vacuuming for filtering and collecting dust.
Abstract:
A magnetic-gas bearing disposed in a compressor is provided. The magnetic-gas bearing includes an axis, multiple magnetic elements, multiple magnetic coils and a static pressure gas restrictor. The magnetic elements encircle the axis, and each magnetic element has two ends wound around by the magnetic coils respectively, such that the two ends of each magnetic element form a first magnetic pole and a second magnetic pole respectively. The static pressure gas restrictor encircles the axis and has a jet opening, such that the gas pass through the jet opening to form a gas-film between the static pressure gas restrictor and the axis. Besides, an oil-free centrifugal blade compressor including the magnetic-gas bearing mentioned above is also provided.
Abstract:
A centrifugal fan apparatus is disclosed in the present invention. The characteristics of the centrifugal fan apparatus lies in that the width of airflow channel defined between the rim of the impeller and the inner wall of the housing accommodating the impeller is uniform, and two airflow spaces defined between the axial cross section of the impeller and upper housing and lower housing respectively are not symmetry. Due to these two characteristics, the centrifugal fan apparatus is capable of making larger pressure difference to inducing higher flow rate and reducing noise while the centrifugal fan apparatus is operated. The present invention also provides a dust-collecting module that is formed by adopting the centrifugal fan apparatus with a designed dust-collecting casing, which is capable of being a sucker of a vacuum cleaner to collect dust of the surroundings for the purpose of environment cleaning.
Abstract:
A centrifugal impeller employed in a centrifugal machine, includes a main body, the main body generally being conical and defining a shaft bore in a center portion thereof; and a plurality of blade groups evenly arranged surrounding the shaft bore in sequence, each of the blade groups having a plurality of blades wherein neighboring blades having an interval angle, and the number and corresponding interval angles of the blades of different blade groups are identical. The present impeller structure can be employed to distribute the concentrated energy of the discrete tones noise of the blades, which is generated by the high-speed rotation impeller, and further to reduce the operating tones noise.
Abstract:
An impeller structure for a centrifugal fan device is disclosed, in which the impeller structure is primarily comprised of: a disc; and a plurality of blade structures, each being arranged on the disc; wherein, each blade structure further comprises: a first blade; and a second blade, arranged at a circumferential length away from a side of the first blade while radially overlapping with the radial of the first blade by a specific overlap area for forming a gap passage functioning as a nozzle. As a fluidic is flowing through and shooting out of the gap passage, not only the growth of the boundary layers on the suction surfaces of front blades are interrupted, but also as the fluidic with high kinetic energy is mixing with the low-kinetic fluidic flowing on the suction surfaces of rear blades, the thickness of the boundary layer is reduced while the separation point is delayed and thus separation can be prevented.