Abstract:
An apparatus includes a first gunsight and a second gunsight, where both the first and the second sights are configured to be positioned on a forward portion of a barrel of a firearm. According to an embodiment, a third gunsight may be configured to be positioned on the forward portion of the barrel. The gunsight may be interchangeable with different gunsights.
Abstract:
An apparatus and method for noninvasive determination of analyte properties of human tissue by quantitative infrared spectroscopy to clinically relevant levels of precision and accuracy. The system includes subsystems optimized to contend with the complexities of the tissue spectrum, high signal-to-noise ratio and photometric accuracy requirements, tissue sampling errors, calibration maintenance problems, and calibration transfer problems. The subsystems can include an illumination/modulation subsystem, a tissue sampling subsystem, a data acquisition subsystem, a computing subsystem, and a calibration subsystem. The invention can provide analyte property determination and identity determination or verification from the same spectroscopic information, making unauthorized use or misleading results less likely than in systems that use separate analyte and identity determinations. The invention can be used to control and monitor individuals accessing controlled environments.
Abstract:
A multiband antenna system includes a helical antenna having a first leg and a second leg wherein the first leg consists of a coaxial conductor. The multiband antenna also includes an antenna sub-system coupled to the helical antenna wherein the coaxial conductor feeds the antenna sub-system. A radome encloses components of the antenna system, and the radome may be covered by a radio-frequency transparent sock for concealment purposes.
Abstract:
Embodiments of the present invention provide an apparatus suitable for determining properties of in vivo tissue from spectral information collected from the tissue. An illumination system provides light at a plurality of broadband ranges, which are communicated to an optical probe. The optical probe receives light from the illumination system and transmits it to in vivo tissue, and receives light diffusely reflected in response to the broadband light, emitted from the in vivo tissue by fluorescence thereof in response to the broadband light, or a combination thereof. The optical probe communicates the light to a spectrograph which produces a signal representative of the spectral properties of the light. An analysis system determines a property of the in vivo tissue from the spectral properties. A calibration device mounts such that it is periodically in optical communication with the optical probe.
Abstract:
A method of determining a measure of a tissue state (e.g., glycation end-product or disease state) in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical with the tissue responsive to the excitation light is detected. The detected light can be combined with a model relating fluorescence with a measure of tissue state to determine a tissue state. The invention can comprise measuring the fluorescence lifetime in either time-domain or frequency domain modes. The invention can also comprise a variety of models relating fluorescence to a measure of tissue state, including a variety of methods for generating such models. For example, multivariate models can be developed that relate lifetime trends of one or more constituents to increasing propensity to diabetes and pre-diabetes. Other biologic information can be used in combination with the fluorescence properties to aid in the determination of a measure of tissue state. The invention also comprises apparatuses suitable for carrying out the method, including appropriate light sources, detectors, and models (for example, implemented on computers) used to relate detected fluorescence and a measure of tissue state.
Abstract:
Solar blind ultraviolet communication systems can provide short to medium range non line-of-sight and line-of-sight links which are covert and insensitive to meteorological conditions. Operation in the solar blind region provides zero background conditions and strong scattering interactions. Scattering provides the basis for transferring information when non line-of-sight conditions exist. Zero background conditions are a result of strong absorption of solar radiation in the upper atmosphere. These conditions make it possible to operate very sensitive wide field-of-view quantum noise limited photon counting receivers, and provide communication systems that perform very differently than free space optical systems that operate in other spectral regions. These systems may be compact and require very low primary power for operation. Non line-of-sight ultraviolet communication systems can provide reliable inter-nodal communications for unattended ground sensor networks. This type of system is particularly attractive when non line-of-sight conditions exist between nodes, covert operation is required, and insensitivity to positioning and ground proximity are desired. Light emitting diode technology being developed under the DARPA SUVOS program represents an enabling technology for these systems. Small, low power and low cost systems compatible with unattended ground sensor networks will be available as a result of this program. Data rates of hundreds of kbps with bit error rates (BER) of 10−7 and inter-nodal ranges of hundreds of meters are consistent with phenomenology and technology. Line-of-sight ultraviolet communications systems also offer some unique characteristics for exfiltration of data from an unattended ground sensor network. The absence of background radiation makes it possible to operate with wide field-of-view receivers and large transmitter cone angles. This capability significantly reduces acquisition/pointing/tracking requirements that are traditionally associated with free space optical links. In addition, strong forward aerosol scatter in the ultraviolet reduces dependence on meteorological conditions. The operational range of line-of-sight solar blind communication systems is on the order of kilometers. By selection of operating wavelength within the solar blind region, performance can be optimized to provide reliable communications and at the same time provide covert operation. Data rates on the order of megabits per second are possible with line-of-sight systems.
Abstract:
Embodiments of the present invention provide an apparatus suitable for determining properties of in vivo tissue from spectral information collected from various tissue sites. An illumination system provides light at a plurality of broadband ranges, which are communicated to an optical probe. The optical probe can be a flexible probe in some embodiments, allowing ease of application. Light homogenizers and mode scramblers can be employed to improve the performance in some embodiments. The optical probe in some embodiments physically contacts the tissue, and in some embodiments does not physically contact the tissue. The optical probe receives light from the illumination system and transmits it to tissue, and receives light diffusely reflected in response to the broadband light, emitted from the in vivo tissue by fluorescence thereof in response to the broadband light, or a combination thereof. The optical probe can communicate the light to a spectrograph which produces a signal representative of the spectral properties of the light. An analysis system determines a property of the in vivo tissue from the spectral properties.
Abstract:
A method of determining a measure of a tissue state (e.g., glycation end-product or disease state) in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical with the tissue responsive to the excitation light is detected. The detected light can be combined with a model relating fluorescence with a measure of tissue state to determine a tissue state. The invention can comprise single wavelength excitation light, scanning of excitation light (illuminating the tissue at a plurality of wavelengths), detection at a single wavelength, scanning of detection wavelengths (detecting emitted light at a plurality of wavelengths), and combinations thereof. The invention also can comprise correction techniques that reduce determination errors due to detection of light other than that from fluorescence of a chemical in the tissue. For example, the reflectance of the tissue can lead to errors if appropriate correction is not employed. The invention can also comprise a variety of models relating fluorescence to a measure of tissue state, including a variety of methods for generating such models. Other biologic information can be used in combination with the fluorescence properties to aid in the determination of a measure of tissue state. The invention also comprises apparatuses suitable for carrying out the method, including appropriate light sources, detectors, and models (for example, implemented on computers) used to relate detected fluorescence and a measure of tissue state.
Abstract:
Thermal control through a channel structure is disclosed. In one embodiment, an apparatus includes devices operable at an undesired temperature relative to a desired operating temperature, a vented cover of each of devices, and a channel structure formed along a side face of each of the devices, the channel structure having any number of ridges to transfer a gas between the vented cover and an external location to the apparatus. The gas may modify an operating state of the devices from the undesired temperature to the desired operating temperature. A heat structure coupled to the vented cover and the side face may absorb a portion of an energy dissipated by at least one of the devices. A printed circuit board may be formed along an opposite face relative to the vented cover to enable the gas to escape to the external location through a cavity of the apparatus.