Abstract:
A wash-free air-guiding cover includes a cover having a body with a fixing seat disposed on a side thereof. A ventilation tube is disposed on the fixing seat and includes a ventilation hole intercommunicated with the other side of the body. An air guiding device is mounted to the fixing seat and includes a tube having first, second, and third air guiding spaces. The air guiding device further includes first and second sealing members and first and second flow guiding rods. Air flowing into the tube must flow zigzag through the first, second, and third air guiding spaces and between the first and second flow guiding rods and the second and third air guiding spaces, assuring smooth flow of air during the painting operation and avoiding the paint from leaking via the ventilation tube and the ventilation hole of the cover.
Abstract:
A surface acoustic wave (SAW) bio-chip is designed with signal processing circuits. The chip can achieve precise measurements or detection quantitatively via the difference between the experiment-control mode, and followed by amplification and filtering of the signal processing circuits. By changing the designs of the substrate, quantitative detection toward different analyses can be achievable.
Abstract:
A surface acoustic wave (SAW) bio-chip is designed with signal processing circuits. The chip can achieve precise measurements or detection quantitatively via the difference between the experiment-control mode, and followed by amplification and filtering of the signal processing circuits. By changing the designs of the substrate, quantitative detection toward different analyses can be achievable.
Abstract:
A micro-filter for filtering blood cells has a plurality of filtering channel structures, each having a first through hole and a first concave portion connecting to each other, and a plurality of through channel structures respectively connect to the filtering channel structures. Each defines a second through hole opposite the first concave portion, whereby the filtering channel structures are respectively attached to the through channel structures to provide more than two filtering effects.
Abstract:
The present invention provides an editable radio frequency identification device and system for editing the same. The editable radio frequency identification device includes antenna and a substrate having two adjacent zones formed thereon an editable area and a transducer. The editable area is provided for a writing device to define a pattern representing an identification code thereon. The antenna device is provided for receiving external signal and the transducer converts the received signal into surface acoustic wave for being transmitted to the editable area. The writing device can be a light emitting device, a punch, a stamp, or a printing apparatus.
Abstract:
An inertia device is constructed by both suspension structure and micro-electroplating structure. The suspension structure may be manufactured by surface micromachining technique of sacrificial layer process or bulk micromachining technique incorporating with thin film process. One side of the suspension structure is arranged firmly to a supporting piece, so that another side of the suspension structure is in a suspension state. The suspension side of the suspension structure is made as micro-electroplating structure through the micro-electroplating process and functions as inertia mass for an inertia sensor. The size of the micro-electroplating structure may be changed through the micro-electroplating process, such that the inertia sensor may be adapted for sensing in different levels. Furthermore, a microstructure of high aspect ratio may be achieved by taking the advantage of a metal during the selection of a processing material, such that the objective for lateral sensing or driving signal may be fulfilled.
Abstract:
The invention is to provide a vibratory double-axially sensing micro-gyroscope, which includes a base, on center of which a supporting hub is arranged, and plural suspending arms are extended outwardly with equal altitude and in radial direction from the supporting hub and, at the outside end of the suspending arm, a platform is formed, and a capacitance sensing electrode or a static-electricity driving electrode is plated respectively at each side of the platform top, below which a static-electricity driving electrode or a capacitance sensing electrode is arranged; take a preferred embodiment of the present invention for example, if the capacitance sensing electrode is arranged at top of the platform and the static-electricity driving electrode is arranged below the platform, then the suspending arm and the platform will vibrate vertically by the attraction of the static-electricity when applying driving voltage, and the vibratory phase difference between two adjacent suspending arms and the platform is 180 degrees; when the gyroscope is rotated horizontally, the suspending arm and the platform will generate horizontal displacement caused by Coriolis force and, by measuring the change of capacitance value, the magnitude of the angular velocity of vibration is obtained; since its structure has symmetrical property, so it has sensing ability in both X or Y axes and, because it has superior stability and is able to resist environment noise and vibration, its sensing capability is enhanced and, since its machining method is simple, so it is adapted for mass production for having lower manufacturing cost.
Abstract:
A performance-adjusting device for inertia device is constructed by both suspension structure and micro-electroplating structure. The suspension structure may be manufactured by surface micromachining technique of sacrificial layer process or bulk micromachining technique incorporating with thin film process. One side of the suspension structure is arranged firmly to a supporting piece, such that another side of the suspension structure is shown as a suspension state. The suspension side of the suspension structure is made as micro-electroplating structure through the micro-electroplating process and is functioned as inertia mass for an inertia sensor. The size of the micro-electroplating structure may be changed through the micro-electroplating process, such that the inertia sensor may be adapted for sensing in different levels. Furthermore, a microstructure of high aspect-ratio may be achieved by taking the advantage of a metal during the selection of a processing material, such that the objective for lateral sensing or driving signal may be fulfilled.
Abstract:
The present invention is related to a flexible substrate structure for microneedle arrays and its manufacturing method, whose structure mainly comprising: tapered shape objects and flexible substrate. Wherein, structure of the tapered shape object is composed of a tip, sidewalls, and a base. Meanwhile, the flexible substrate winds tightly around sidewalls of tapered shape objects and is set up on, yet covers the base surface of tapered shape object which faces the tip of tapered shape object. Because the structure applies a flexible substrate along with tapered shape objects, hence, the fit-to-body capability is increased and allows thereof more appropriate for backside drug delivery, as well as sufficiently bring the characteristic of large-area manufacturing into full play.
Abstract:
A plane type electric precipitator includes an electrode plate of plane shape, made of electricity-conducting material; a collecting plate, parallel to the electrode plate and made of electricity-conducting material; a plurality of electrode units, placed on the electrode plate and having tips; wherein direct electric voltage is applied between the electrode plate and the collecting plate, so that air passing through is exposed to high electric fields close to the tips of the electrode units, ionizing suspended particles and trapping ionized particles at the collecting plate, so that an air-cleaning effect results.