Abstract:
The present invention generally relates to devices, systems, and methods for acquiring and/or dispensing a sample without introducing a gas into a microfluidic system, such as a liquid bridge system. An exemplary embodiment provides a sampling device including: a sampling member for acquiring or dispensing a sample; and a supply of a fluid that is immiscible with the sample; in which the device is configured to provide a continuous flow of immiscible fluid enveloping the sampling member.
Abstract:
A multi-port liquid bridge (1) adds aqueous phase droplets (10) in an enveloping oil phase carrier liquid (11) to a draft channel (4, 6). A chamber (3) links four ports, and it is permanently full of oil (11) when in use. Oil phase is fed in a draft flow from an inlet port (4) and exits through a draft exit port (6) and a compensating flow port (7). The oil carrier and the sample droplets (3) (“aqueous phase”) flow through the inlet port (5) with an equivalent fluid flow subtracted through the compensating port (7). The ports of the bridge (1) are formed by the ends of capillaries held in position in plastics housings. The phases are density matched to create an environment where gravitational forces are negligible. This results in droplets (10) adopting spherical forms when suspended from capillary tube tips. Furthermore, the equality of mass flow is equal to the equality of volume flow. The phase of the inlet flow (from the droplet inlet port (5) and the draft inlet port (4) is used to determine the outlet port (6) flow phase.
Abstract:
A bridge (30) comprises a first inlet port (31) at the end of a capillary, a narrower second inlet port (32) which is an end of a capillary, an outlet port (33) which is an end of a capillary, and a chamber (34) for silicone oil. The oil is density-matched with the reactor droplets such that a neutrally buoyant environment is created within the chamber (34). The oil within the chamber is continuously replenished by the oil separating the reactor droplets. This causes the droplets to assume a stable capillary-suspended spherical form upon entering the chamber (34). The spherical shape grows until large enough to span the gap between the ports, forming an axisymmetric liquid bridge. The introduction of a second droplet from the second inlet port (32) causes the formation of an unstable funicular bridge that quickly ruptures from the, finer, second inlet port (32), and the droplets combine at the liquid bridge (30). In another embodiment, a droplet (55) segments into smaller droplets which bridge the gap between the inlet and outlet ports.
Abstract:
Devices, systems, and methods for charging fluids are disclosed. The charging of fluids improves the mixing of fluids in microfluidic systems. The charging is performed by producing an ion field (50) between an ionizing electrode (20) and an opposed ground electrode (30). A fluid-containing vessel (40) is positioned between the opposed electrodes and the ion field charges the fluid (41) in the vessel.
Abstract:
A sample handling method may include drawing an encapsulating liquid from an encapsulating-liquid input; discharging the drawn encapsulating liquid (a) onto a free surface of a carrier liquid in a carrier-liquid conduit comprising a stabilisation feature and (b) proximate to the stabilisation feature, the encapsulating liquid being immiscible with the carrier liquid, so that the discharged encapsulating liquid does not mix with the carrier liquid, floats on top of the carrier liquid, and is immobilised by the stabilisation feature; drawing a sample liquid from a sample-liquid input; and discharging the drawn sample liquid, the sample liquid being immiscible with the encapsulating liquid and with the carrier liquid, so that the sample liquid does not mix with the encapsulating liquid or with the carrier liquid.
Abstract:
A sample handling method may include drawing an encapsulating liquid from an encapsulating-liquid input; discharging the drawn encapsulating liquid (a) onto a free surface of a carrier liquid in a carrier-liquid conduit comprising a stabilisation feature and (b) proximate to the stabilisation feature, the encapsulating liquid being immiscible with the carrier liquid, so that the discharged encapsulating liquid does not mix with the carrier liquid, floats on top of the carrier liquid, and is immobilised by the stabilisation feature; drawing a sample liquid from a sample-liquid input; and discharging the drawn sample liquid, the sample liquid being immiscible with the encapsulating liquid and with the carrier liquid, so that the sample liquid does not mix with the encapsulating liquid or with the carrier liquid.
Abstract:
The present invention generally relates to devices, systems, and methods for acquiring and/or dispensing a sample without introducing a gas into a microfluidic system, such as a liquid bridge system. An exemplary embodiment provides a sampling device including: a sampling member for acquiring or dispensing a sample; and a supply of a fluid that is immiscible with the sample; in which the device is configured to provide a continuous flow of immiscible fluid enveloping the sampling member.
Abstract:
A multi-port liquid bridge (1) adds aqueous phase droplets (10) in an enveloping oil phase carrier liquid (11) to a draft channel (4, 6). A chamber (3) links four ports, and it is permanently full of oil (11) when in use. Oil phase is fed in a draft flow from an inlet port (4) and exits through a draft exit port (6) and a compensating flow port (7). The oil carrier and the sample droplets (3) (“aqueous phase”) flow through the inlet port (5) with an equivalent fluid flow subtracted through the compensating port (7). The ports of the bridge (1) are formed by the ends of capillaries held in position in plastics housings. The phases are density matched to create an environment where gravitational forces are negligible. This results in droplets (10) adopting spherical forms when suspended from capillary tube tips. Furthermore, the equality of mass flow is equal to the equality of volume flow. The phase of the inlet flow (from the droplet inlet port (5) and the draft inlet port (4) is used to determine the outlet port (6) flow phase.
Abstract:
A bridge (30) comprises a first inlet port (31) at the end of a capillary, a narrower second inlet port (32) which is an end of a capillary, an outlet port (33) which is an end of a capillary, and a chamber (34) for silicone oil. The oil is density-matched with the reactor droplets such that a neutrally buoyant environment is created within the chamber (34). The oil within the chamber is continuously replenished by the oil separating the reactor droplets. This causes the droplets to assume a stable capillary-suspended spherical form upon entering the chamber (34). The spherical shape grows until large enough to span the gap between the ports, forming an axisymmetric liquid bridge. The introduction of a second droplet from the second inlet port (32) causes the formation of an unstable funicular bridge that quickly ruptures from the, finer, second inlet port (32), and the droplets combine at the liquid bridge (30). In another embodiment, a droplet (55) segments into smaller droplets which bridge the gap between the inlet and outlet ports.
Abstract:
Provided herein is a biological detection system and method of use wherein the biological detection system comprises at least one mixer or liquid bridge for combining at least two liquid droplets and an error correction system for detecting whether or not proper mixing or combining of the two component droplets have occurred.