Abstract:
The invention provides a method of making a transistor. A gate dielectric layer is formed on a semiconductor substrate. A gate is formed on the dielectric layer, the gate having an exposed upper surface and exposed side surfaces. A first silicon nitride layer having a first thickness is deposited over the gate, for example over an oxide layer on the gate, at a first deposition rate. A second silicon nitride layer having a second thickness is deposited over the first silicon nitride layer at a second deposition rate, the second thickness being more that the first thickness and the second deposition rate being more than the first deposition rate. The first silicon nitrogen layer then has a lower hydrogen concentration. At least the second silicon nitride layer (or a silicon oxide layer in the case of an ONO spacer) is etched to leave spacers next to the side surfaces while exposing the upper surface of the gate and areas of the substrate outside the spacers.
Abstract:
A chemical mechanical polishing pad includes a base portion and a polishing portion. The base portion has opposite first and second side surfaces. The polishing portion extends from the first side surface away from the second side surface, has a polishing surface facing away from the base portion, and has at least one trench formed in the polishing surface. Each of the trenches has an opening defined by the polishing surface. A horizontal width of the opening of each of the trenches is equal to or smaller than that of the remaining portion of the trench. The chemical mechanical polishing pad is made by laminating a plurality of polymer layers.
Abstract:
The present invention relates a low noise amplifier with adaptive frequency responses and method of altering frequency responses thereof. The low noise amplifier comprises an inductive degeneration circuit, N cascode circuits and N switches. The inductive degeneration circuit has an input impedance and a frequency response characteristic. Each of the cascode circuits is connected in parallel to the inductive degeneration circuit. Each of the switches is connected to a corresponding cascode circuit respectively. Each of the cascode circuit is turned ON or OFF by enabling or disabling the corresponding switches to alter the frequency response characteristic.
Abstract:
The invention provides electromagnetic wave absorption components and device. The electromagnetic wave absorption component includes an electromagnetic shield constituted by at least one material selected from the group consisting of a carbon nanocoil and a carbon fiber, and a solidified layer formed of a mixture of a solidifiable material and the electromagnetic shield after solidification. Another embodiment of the electromagnetic wave absorption component includes an electromagnetic shield constituted by at least one material selected from the group consisting of a carbon nanocoil and a carbon fiber, and a solidified layer, formed by solidifying a solidifiable material, applicable to encapsulating the electromagnetic shield. Further, the electromagnetic wave absorption device is formed by stacking at least two of the above-mentioned electromagnetic wave absorption components.
Abstract:
A chemical mechanical polishing pad includes a base portion and a polishing portion. The base portion has opposite first and second side surfaces. The polishing portion extends from the first side surface away from the second side surface, has a polishing surface facing away from the base portion, and has at least one trench formed in the polishing surface. Each of the trenches has an opening defined by the polishing surface. A horizontal width of the opening of each of the trenches is equal to or smaller than that of the remaining portion of the trench. The chemical mechanical polishing pad is made by laminating a plurality of polymer layers.
Abstract:
A method of fabricating a semiconductor device having a gate structure comprising SiO2 and Si3N4 that exhibits reduced hydrogen diffusion during low temperature chemical vapor deposition of silicon nitride. In the method, a silicon dioxide (SiO2) layer is deposited on a wafer after a gate structure is fabricated. A barrier layer is formed on the silicon dioxide (SiO2) layer. Then a silicon nitride layer is formed over it by low temperature chemical vapor deposition. The barrier layer reduces, and may even altogether prevent, diffusion of the hydrogen absorbed by the silicon nitride layer into the gate oxide and channel during the low temperature chemical vapor deposition of silicon nitride.