Abstract:
A touch sensing substrate includes a substrate, a first light sensing element, a second light sensing element and a first bias line. The first light sensing element includes a first gate electrode, a first active pattern overlapping with the first gate electrode, a first source electrode partially overlapping with the first active pattern and a first drain electrode partially overlapping with the first active pattern. The second light sensing element includes a second gate electrode, a second active pattern overlapping with the second gate electrode, a second source electrode partially overlapping with the second active pattern and a second drain electrode partially overlapping with the second active pattern. The first bias line is connected to the first and second gate electrodes.
Abstract:
An optical sensor includes a visible light sensor includes a visible light sensing transistor and an infrared light sensor includes an infrared light sensing transistor, wherein the visible light sensing transistor receives a first driving voltage through a first driving voltage line, the infrared light sensing transistor receives a second driving voltage through a second driving voltage line, and the visible light sensing transistor and the infrared light sensing transistor receive a reference voltage through a reference voltage line.
Abstract:
An optical sensor preventing damage to a semiconductor layer, and preventing a disconnection and a short circuit of a source electrode and a drain electrode, and a manufacturing method of the optical sensor is provided. The optical sensor includes: a substrate; an infrared ray sensing thin film transistor including a first semiconductor layer disposed on the substrate; a visible ray sensing thin film transistor including a second semiconductor layer disposed on the substrate; a switching thin film transistor including a third semiconductor layer disposed on the substrate; and a semiconductor passivation layer enclosing an upper surface and a side surface of an end portion of at least one of the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer.
Abstract:
A display panel includes a plurality of pixels disposed on a first panel substrate of first and second panel substrates that face each other and cooperate to display an image. The second panel substrate includes a base substrate, a read-out line, a first insulating layer, a scan line, a switching device, and a light sensor. The read-out line is disposed on the base substrate and extended in a direction. The first insulating layer is disposed on the read-out line. The scan line is extended to cross the read-out line and disposed on the first insulating layer. The switching device includes a first electrode connected to the scan line, a second electrode connected to a read-out line, and a third electrode spaced apart from the second electrode. The light sensor is structured to selectively detect lights of predetermined wavelengths and connected to the third electrode of the switching device.
Abstract:
A display apparatus includes a light generating part and a display panel. The display panel includes a first substrate, and a second substrate facing the first substrate. The second substrate includes a plurality of pixel units including a sensor sensing the light generated from the light generating part and reflected from an object disposed on the display panel, and a pixel. The display panel further includes a light blocking member which is positioned at a position corresponding to an area in which the sensor is disposed and prevents the light generated from the light generating part from being directly incident to the sensor. The light blocking member is disposed on the first substrate.
Abstract:
An information detection device includes: a plurality of light sensing units each configured to detect light; a plurality of sensor scanning drivers each configured to apply sensor scanning signals to the light sensing units; a sensing signal processor configured to receive position information detected by the light sensing units; a plurality of bias applying units each configured to apply bias voltages to the light sensing units; wherein each bias applying unit applies a different polarity of bias voltage.
Abstract:
An optical sensor preventing damage to a semiconductor layer, and preventing a disconnection and a short circuit of a source electrode and a drain electrode, and a manufacturing method of the optical sensor is provided. The optical sensor includes: a substrate; an infrared ray sensing thin film transistor including a first semiconductor layer disposed on the substrate; a visible ray sensing thin film transistor including a second semiconductor layer disposed on the substrate; a switching thin film transistor including a third semiconductor layer disposed on the substrate; and a semiconductor passivation layer enclosing an upper surface and a side surface of an end portion of at least one of the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer.
Abstract:
A display apparatus includes pixels, a driver for providing a driving voltage, and conductive lines including a first line, a second line, and a third line. The display apparatus further includes a first circuit electrically connected to the driver for receiving the driving voltage and electrically connected to the pixels for controlling the pixels. The first circuit includes a first chip, a first inner line, a first pad, a second pad, a third pad, a fourth pad, and a fifth pad. The first chip is electrically connected to the driver through the third pad, the fourth pad, the fifth pad, the third line, the second line, the second pad, the first inner line, the first pad, and the first line. The fourth and fifth pads may contribute to consistent resistance for paths that transmit the driving voltage, for enabling desirable display quality of the display apparatus.
Abstract:
A method for operating a multi-mode terminal having a processor includes receiving a data packet, determining whether the data packet includes foreground data, and selecting, using the processor, a first mode or a second mode based on the presence of the foreground data in the data packet, in which the second mode is selected if the data packet is determined to comprise the foreground data. A multi-mode terminal includes a receiver to receive a data packet, and a mode determiner to determine whether the data packet comprises foreground data, and to select a first mode or a second mode based on the presence of the foreground data in the data packet.
Abstract:
A light sensing panel includes sensors arranged in rows and columns, where the sensors receive a first bias voltage and a second bias voltage and output light sensing signals based on light incident thereto; first and second bias lines which transfers the first and second bias voltages, respectively, to the sensors, where each of the first and second bias lines includes a main line and sub lines diverged from the main line and arranged in a second direction corresponding to the columns;, where the sub lines of the first and second bias lines are alternately arranged, and where when two adjacent sub lines are shorted, the shorted sub line of the first bias line is separated from the main line of the first bias line.