Abstract:
A reactive pre-clean chamber that contains a wafer heating apparatus, such as a high-temperature electrostatic chuck (HTESC), for directly heating a wafer supported on the apparatus during a pre-cleaning process. The wafer heating apparatus is capable of heating the wafer to the optimum temperatures required for a hydrogen plasma reactive pre-clean (RPC) process. Furthermore, degassing and pre-cleaning can be carried out in the same pre-clean chamber. The invention further includes a method of pre-cleaning a wafer using a pre-clean chamber that contains a wafer heating apparatus.
Abstract:
A device includes a conductive layer including a bottom portion, and a sidewall portion over the bottom portion, wherein the sidewall portion is connected to an end of the bottom portion. An aluminum-containing layer overlaps the bottom portion of the conductive layer, wherein a top surface of the aluminum-containing layer is substantially level with a top edge of the sidewall portion of the conductive layer. An aluminum oxide layer is overlying the aluminum-containing layer. A copper-containing region is over the aluminum oxide layer, and is spaced apart from the aluminum-containing layer by the aluminum oxide layer. The copper-containing region is electrically coupled to the aluminum-containing layer through the top edge of the sidewall portion of the conductive layer.
Abstract:
A method of forming an integrated circuit structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form a seed layer in a first chamber; and performing a first etch step to remove a portion of the seed layer. The method may further include performing a second deposition step to increase the thickness of the seed layer. At least one of the first etch step and the second deposition step is performed in a second chamber different from the first chamber.
Abstract:
A method of forming a seed layer of an interconnect structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form the seed layer; and in-situ performing a first etch step to remove a portion of the seed layer. The method may further includes additional deposition and etch steps for forming the seed layer.
Abstract:
Provided is a method for forming a composite barrier layer with superior barrier qualities and superior adhesion properties to both dielectric materials and conductive materials as the composite barrier layer extends throughout the semiconductor device. The composite barrier layer may be formed in regions where it is disposed between two conductive layers and in regions where it is disposed between a conductive layer and a dielectric material. The composite barrier layer may consist of various pluralities of layers and the arrangement of layers that form the composite barrier layer may differ as the barrier layer extends throughout different sections of the device. Amorphous layers of the composite barrier layer generally form boundaries with dielectric materials and crystalline layers generally form boundaries with conductive materials such as interconnect materials.
Abstract:
A semiconductor device having a nonconductive cap layer comprising a first metal element. The nonconductive cap layer comprises a first metal nitride, a first metal oxide, or a first metal oxynitride over conductive lines and an insulating material between the conductive lines. An interface region may be formed over the top surface of the conductive lines, the interface region including the metal element of the cap layer. The cap layer prevents the conductive material in the conductive lines from migrating or diffusing into adjacent subsequently formed insulating material layers. The cap layer may also function as an etch stop layer.
Abstract:
Provided is a method for forming a composite barrier layer with superior barrier qualities and superior adhesion properties to both dielectric materials and conductive materials as the composite barrier layer extends throughout the semiconductor device. The composite barrier layer may be formed in regions where it is disposed between two conductive layers and in regions where it is disposed between a conductive layer and a dielectric material. The composite barrier layer may consist of various pluralities of layers and the arrangement of layers that form the composite barrier layer may differ as the barrier layer extends throughout different sections of the device. Amorphous layers of the composite barrier layer generally form boundaries with dielectric materials and crystalline layers generally form boundaries with conductive materials such as interconnect materials.
Abstract:
A device includes a conductive layer including a bottom portion, and a sidewall portion over the bottom portion, wherein the sidewall portion is connected to an end of the bottom portion. An aluminum-containing layer overlaps the bottom portion of the conductive layer, wherein a top surface of the aluminum-containing layer is substantially level with a top edge of the sidewall portion of the conductive layer. An aluminum oxide layer is overlying the aluminum-containing layer. A copper-containing region is over the aluminum oxide layer, and is spaced apart from the aluminum-containing layer by the aluminum oxide layer. The copper-containing region is electrically coupled to the aluminum-containing layer through the top edge of the sidewall portion of the conductive layer.
Abstract:
A method of forming an integrated circuit structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form a seed layer in a first chamber; and performing a first etch step to remove a portion of the seed layer. The method may further include performing a second deposition step to increase the thickness of the seed layer. At least one of the first etch step and the second deposition step is performed in a second chamber different from the first chamber.
Abstract:
A method of forming a seed layer of an interconnect structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form the seed layer; and in-situ performing a first etch step to remove a portion of the seed layer. The method may further includes additional deposition and etch steps for forming the seed layer.