Abstract:
Various embodiments for a method that allow for a more accurate analyte concentration with a biosensor by determining at least one physical characteristic of the sample and determining whether at least one output transient signal of the biosensor is erroneous by monitoring the biosensor and flagging an error if the signal outputs of the biosensor do not meet certain criteria.
Abstract:
A method and system are provided to determine fill sufficiency of a biosensor test chamber by determining capacitance of the test chamber in which an electrochemical reaction is initiated in the test chamber and an oscillating voltage of a predetermined frequency is applied to the chamber. A phase angle between a current output and the oscillating voltage from the chamber is determined and the capacitance is calculated based on a product of the current output and a sine of the phase angle divided by a product of two times pi times the frequency and the voltage.
Abstract:
Described and illustrated herein are systems and exemplary methods of operating an analyte measurement system having a meter and a test strip. In one embodiment, the method may be achieved by applying a first test voltage between a reference electrode and a second working electrode and applying a second test voltage between the reference electrode and a first working electrode; measuring a first test current, a second test current, a third test current and a fourth test current at the second working electrode after a blood sample containing an analyte is applied to the test strip; measuring a fifth test current at the first working electrode; estimating a hematocrit-corrected analyte concentration from the first, second, third, fourth and fifth test currents; and annunciating the hematocrit-corrected analyte concentration.
Abstract:
An analyte meter having a test strip port is configured to transmit an electric signal through a received test strip with a sample. A pair of electrodes apply the electric signal and receive an electrical response from the test strip. A processing unit analyzes the electrical response and uses the response to determine an analyte level of the sample.
Abstract:
Various embodiments that allow a more accurate electrochemical test strip measurement by identifying erroneous output signals during a glucose measurement thereby ensuring a much more accurate glucose test system.
Abstract:
An electrochemical-based analytical test strip for the determination of an analyte (such as glucose) in a bodily fluid sample (for example, a whole blood sample) and/or a characteristic of the bodily fluid sample (e.g., hematocrit) includes a sample-entry chamber with a sample-application opening disposed on an end edge of the electrochemical-based analytical test strip, and first and second sample-determination chambers, each in direct fluidic communication with the sample-entry chamber. The electrochemical-based analytical test strip also includes first and second electrodes (such as first and second hematocrit electrodes) disposed in the first sample-determination chamber, and a third and fourth electrodes (for example working and reference electrodes) disposed in the second sample-determination chamber. Moreover, the first and second sample-determination chambers intersect the sample-entry chamber perpendicular (or nearly perpendicular) to one another and the first sample-determination chamber also intersects the sample-entry chamber in an aligned manner.
Abstract:
A blood analyte measurement system is configured to receive a test strip. An LED proximate to the test strip is used to illuminate the test strip and, in conjunction with a photodiode, to determine its type. A compensation circuit of the measurement system insures that ambient light does not cause interference with the LED illumination to prevent saturation of the photodiode.
Abstract:
A hand-held test meter for use with an electrochemical-based analytical test strip in the determination of an analyte (such as glucose) in a bodily fluid sample (for example, a whole blood sample) includes a housing, a micro-controller disposed in the housing, a test strip electrode to ground-reference switch circuit block disposed in the housing, a strip port connector configured for operational insertion of an electrochemical-based analytical test strip with an electrode (e.g., a reference electrode), and a ground-reference. In addition, the test strip electrode to ground-reference switch circuit block is configured to be in electrical communication with an electrode of an electrochemical-based analytical test strip inserted in the strip port connector. Moreover, the test strip electrode to ground-reference switch circuit block is configured to connect and disconnect the electrode of the inserted electrochemical-based analytical test strip to the ground-reference under operational control of the micro-controller.
Abstract:
A hand-held test meter for use with an analytical test strip in the determination of an analyte in a bodily fluid sample includes a housing, a clock module disposed in the housing, a micro-controller disposed in the housing, a low-distortion signal generation circuit block (“LDSGCB”) disposed in the housing, and a strip port connector configured to operationally receive the analytical test strip. The LDSGCB includes a signal summation circuit (“SSC”) sub-block, a resistance-capacitance (RC) filter, and a single operational amplifier. The clock module and micro-controller are configured to generate phase-shifted square wave signals and output the phase-shifted square wave signals to the SSC. The SSC is configured to sum the phase-shifted square wave signals to generate a resultant summed-wave signal and output the resultant summed-wave signal to the RC filter. The RC filter is configured to filter harmonics from the resultant summed-wave signal thereby creating a reduced harmonic distortion signal.
Abstract:
Various embodiments for methods and systems that allow for detecting of a direction in which a sample is flowing towards a plurality of electrodes and detecting a fill error of an electrochemical test strip.