Abstract:
A RF resonator for sensing a physical or an environmental parameter includes a substrate having a substrate surface. A polymer-derived ceramic (PDC) element is positioned on or within the substrate surface. The RF resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing at least one physical or environmental parameter includes at least one RF resonator and a wireless RF reader located remotely from the RF resonator for transmitting a wide-band RF interrogation signal that excites the RF resonator. The wireless RF reader detects a sensing signal retransmitted by the RF resonator and includes a processor for determining the physical or environmental parameter at the location of the RF resonator from the sensing signal.
Abstract:
A method and product made by using a polymeric ceramic precursor to synthesize dense, crack-free bulk ceramics in a technique using a sacrificial mold provides a ceramic structure for many technical, medical and industrial applications. The novel process uses an open cell material as a sacrificial mold to shape a ceramic precursor during curing. The cured ceramic green body can be machined and shaped to form the desired ceramic structure prior to final pyrolysis. The open cell material forms gas release paths to release large amount of gases generated during the pyrolysis of the cured ceramic precursor. After pyrolysis, an intact, dense, crack-free ceramic structure with high purity, strength and durability is obtained. Uses of the present invention include, but are not limited to, bulk ceramic parts, ceramic crucibles, a replacement material in some applications involving glass, silicon carbides, silicon nitrides, hafnium carbide and the like.
Abstract:
A method and product made by using a polymeric ceramic precursor to synthesize dense, crack-free bulk ceramics in a technique using a sacrificial mold provides a ceramic structure for many technical, medical and industrial applications. The novel process uses an open cell material as a sacrificial mold to shape a ceramic precursor during curing. The cured ceramic green body can be machined and shaped to form the desired ceramic structure prior to final pyrolysis. The open cell material forms gas release paths to release large amount of gases generated during the pyrolysis of the cured ceramic precursor. After pyrolysis, an intact, dense, crack-free ceramic structure with high purity, strength and durability is obtained. Uses of the present invention include, but are not limited to, bulk ceramic parts, ceramic crucibles, a replacement material in some applications involving glass, silicon carbides, silicon nitrides, hafnium carbide and the like.
Abstract:
A RF resonator for sensing a physical or an environmental parameter includes a substrate having a substrate surface. A polymer-derived ceramic (PDC) element is positioned on or within the substrate surface. The RF resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing at least one physical or environmental parameter includes at least one RF resonator and a wireless RF reader located remotely from the RF resonator for transmitting a wide-band RF interrogation signal that excites the RF resonator. The wireless RF reader detects a sensing signal retransmitted by the RF resonator and includes a processor for determining the physical or environmental parameter at the location of the RF resonator from the sensing signal.
Abstract:
Novel micro electro mechanical systems (MEMS)-based sensors for use in ultra-high temperature environments are disclosed. The MEMS-based sensors are derived from a class of polymer-derived ceramics selected from the group consisting of SiCN, SiBCN and SiAlCN. The materials of construction are such that, the sensors are capable of accurate, real-time, on-line and in-situ monitoring, suppression of combustion oscillations and detailed measurements in operating structures that have temperatures of from about 1500° K to about 2000° K, extreme pressures/turbulence and harsh chemical off gases. When the novel sensors are mounted on a hot gas path wall, such as, at a combustor exit, there can be a continuous monitoring of pressure pulses/oscillations, wall shear stress, temperature and surface heat flux.