Abstract:
Low-cost, light weight portable cervical traction or spinal decompression devices for home use by a patient. A carriage is slidable along a portion of a support structure parallel to a longitudinal axis. The carriage includes a restraining mechanism adapted to releasably restrain a portion of a patient's body to the carriage. The pneumatic traction force generating apparatus is operatively coupled to move the carriage relative to the support structure when in a pressurized state. The pneumatic traction force generating apparatus is adapted to maintain a generally static traction force during a treatment period when in the pressurized state without additional pressurized air being supplied. A hand pump operated by the patient is fluidly connected to the pneumatic traction force generating apparatus to inject pressurized air. The hand pump is capable of injecting at least 138 kPa (20 psi) of pressure into the pneumatic traction force generating apparatus. A pressure relief mechanism operated by the patient is adapted to release pressure from the pneumatic traction force generating apparatus.
Abstract:
Low-cost, light weight portable cervical traction or spinal decompression devices for home use by a patient. A carriage is slidable along a portion of a support structure parallel to a longitudinal axis. The carriage includes a restraining mechanism adapted to releasably restrain a portion of a patient's body to the carriage. The pneumatic traction force generating apparatus is operatively coupled to move the carriage relative to the support structure when in a pressurized state. The pneumatic traction force generating apparatus is adapted to maintain a generally static traction force during a treatment period when in the pressurized state without additional pressurized air being supplied. A hand pump operated by the patient is fluidly connected to the pneumatic traction force generating apparatus to inject pressurized air. A pressure relief mechanism operated by the patient is adapted to release pressure from the pneumatic traction force generating apparatus.
Abstract:
Low-cost, light weight portable cervical traction or spinal decompression devices for home use by a patient. A carriage is slidable along a portion of a support structure parallel to a longitudinal axis. The carriage includes a restraining mechanism adapted to releasably restrain a portion of a patient's body to the carriage. The pneumatic traction force generating apparatus is operatively coupled to move the carriage relative to the support structure when in a pressurized state. The pneumatic traction force generating apparatus is adapted to maintain a generally static traction force during a treatment period when in the pressurized state without additional pressurized air being supplied. A hand pump operated by the patient is fluidly connected to the pneumatic traction force generating apparatus to inject pressurized air. A pressure relief mechanism operated by the patient is adapted to release pressure from the pneumatic traction force generating apparatus.
Abstract:
Methods and systems for treatment of coronary artery disease (CAD) include implantation of the discharge portion(s) of a catheter and, optionally, electrodes on a lead, near the tissue(s) to be stimulated. Stimulation pulses, i.e., drug infusion pulses and optional electrical pulses, are supplied by a stimulator implanted remotely, and through the catheter or lead, which is tunneled subcutaneously between the stimulator and stimulation site. Stimulation sites include the coronary arteries, the aorta, the left ventricle, the left atrium, and/or the pulmonary veins, among other locations. Disclosed treatments include drugs used for acute treatment of CAD, for chronic treatment of CAD, to promote angiogenesis, and/or as AGE Crosslink Breakers, among other drugs. For instance, the systems and methods reduce or eliminate the incidence of CAD and related morbidities, improve symptoms resulting from CAD, and/or improve cardiac blood flow, cardiac function, and patient quality of life.
Abstract:
An implantable pump system includes: (1) an implantable pump having separate chambers or reservoirs, at least one of which is coupled to the pump so as to allow a programmable rate of delivery of the medication stored in the pump chamber or reservoir, the other chambers or reservoirs of which are at least capable of delivery of a bolus via a pressurized, and potentially independently programmable chamber or pumping mechanism; (2) a patient controller that enables the actuation of the pump so as to administer a bolus or programmed rate of the first, second, third, . . . or nth medication contained in the independent chambers or reservoirs coupled to the pump; and (3) a catheter having two or more reservoir-specific inlet ports directed into respective lumens of the catheter. In one embodiment, the distal tips of the respective lumens may be directed to different sites within the patient's body, thereby allowing site specific and independent delivery of the medications stored in the respective pump chambers or reservoirs to be administered to different body sites at independently controlled times and rates. In another embodiment, the distal tips of the respective lumens are directed, more or less, to the same body site or tissue region, thereby providing for the independent delivery of multiple medications to the same regions at independently controlled times and rates.
Abstract:
A portable traction device suitable for cervical traction powered by a pneumatic cylinder. The portable traction device includes a support structure having a longitudinal axis and a carriage slidable along a portion of the support structure parallel to the longitudinal axis. The carriage including restraining mechanism for releasably restraining a portion of a patient's body to the carriage. A pneumatic cylinder includes a cylinder housing attached to the support structure. The cylinder housing contains a piston and piston rod. The piston rod is attached to the carriage for moving the carriage along the longitudinal axis relative to the support structure when pressurized air is injected into the pneumatic cylinder. The piston has at least one pressure activated seal extending circumferentially around the piston for engagement with an inside surface of the cylinder housing. A bicycle-style hand pump fluidly connected to the pneumatic cylinder is provided for injecting pressurized air into the cylinder.
Abstract:
An implantable pump system includes: an implantable pump having separate chambers or reservoirs; and a catheter having two or more reservoir-specific inlet ports directed into respective lumens of the catheter. In one embodiment, the distal tips of the respective lumens may be directed to different sites within the patient's body, thereby allowing site specific and independent delivery of the medications stored in the respective pump chambers or reservoirs to be administered to different body sites at independently controlled times and rates. In another embodiment, the distal tips of the respective lumens are directed, more or less, to the same body site or tissue region, thereby providing for the independent delivery of multiple medications to the same regions at independently controlled times and rates.
Abstract:
A low-cost, light weight portable lumbar fraction device for home use by a patient including a support structure having a longitudinal axis and a carriage slidable along a portion of the support structure parallel to the longitudinal axis. The carriage includes a restraining mechanism adapted to releasably restrain a portion of a patient's body to the carriage. The pneumatic fraction force generating apparatus includes at least one pneumatic chamber and at least one air inlet. The pneumatic traction force generating apparatus is operatively coupled to both the carriage and the support structure to move the carriage relative to the support structure when the at least one pneumatic chamber is in a pressurized state. The pneumatic fraction force generating apparatus is adapted to maintain a generally static fraction force for a period in excess of 10 minutes when in the pressurized state without additional pressurized air being supplied. A hand pump operated by the patient is fluidly connected to the at least one pneumatic chamber for injecting pressurized air into the at least one pneumatic chamber. The hand pump is capable of injecting at least 138 kPa (20 psi) of pressure into the pneumatic chamber. A pressure relief mechanism operated by the patient is adapted to release pressure from the at least one pneumatic chamber.
Abstract:
A portable traction device suitable for cervical or lumbar traction powered by a pneumatic cylinder. The portable traction device includes a support structure having a longitudinal axis and a carriage slidable along a portion of the support structure parallel to the longitudinal axis. The carriage including restraining mechanism for releasably restraining a portion of a patient's body to the carriage. A pneumatic cylinder includes a cylinder housing attached to the support structure. The cylinder housing contains a piston and piston rod. The piston rod is attached to the carriage for moving the carriage along the longitudinal axis relative to the support structure when pressurized air is injected into the pneumatic cylinder. The piston has at least one pressure activated seal extending circumferentially around the piston for engagement with an inside surface of the cylinder housing. A bicycle-style hand pump fluidly connected to the pneumatic cylinder is provided for injecting pressurized air into the cylinder.