Abstract:
Peripheral surgical systems are used for insertion and filling of fluid-filled intraocular lenses, reaccessing and modifying fluid-filled intraocular lenses, and explantation of lenses. Although one peripheral surgical unit may perform all of these functions, in some embodiments different units perform different functions—i.e., each function may be performed by a separate unit, or the functions may be distributed over a smaller number of functional units.
Abstract:
A surgical pack includes a platform having a plurality of recesses configured to function as a surgical tray. A plurality of surgical instruments are contained in a corresponding recess of the platform. The recess may have the shape of the surgical instrument that it is designed to receive. The recess may also include safety mechanisms to protect the tips of certain instruments and to lower the risk of injury caused by them. A packaging or covering holds the platform and the plurality of surgical instruments in a substantially sterile condition.
Abstract:
Disposable handheld phacomorcellation devices and methods for removing lens fragments from an eye of a patient are disclosed. In one embodiment, the phacomorcellation device includes a stationary outer tubular cutting member and a rotatable inner cutting member positioned within the stationary outer tubular cutting member. The outer tubular cutting member and the rotatable inner cutting member each include at least one cutting port having at least one cutting edge. The at least one cutting edge of the outer tubular cutting member and the at least one cutting edge of the inner cutting member cooperate to form a bird beak cutting structure as the inner cutting member rotates with respect to the outer cutting member. The cutting port of the outer tubular cutting member can be substantially closed during rotation of the inner cutting member, thereby preventing lens fragments from floating toward a posterior region of the eye.
Abstract:
A personal surgical center embodied as a general purpose computer (e.g. laptop) with wireless technology for monitoring the operation of an independent surgical center and/or handheld instruments. The computer tracks procedures in the operating room and instruments used during those procedures, and accounts for billing, supply management, and payment options. The monitoring of the instruments used during the surgery is conducted by the personal surgical center while actual control of the settings of those instruments is via the independent surgical center or via controls included in the instruments themselves. The monitored information is stored in a log file which is then transmitted to a hospital server for generating reports, inventory control, billing, and the like. Other information generated during the procedure (e.g. doctor notes) is also stored in the log file. The personal surgical center may also access the hospital server or local data storage device for retrieving a surgeon's specific surgery parameters, obtaining patient files, and the like.
Abstract:
Various adjustable cannula systems are provided. The systems can include an adjustable cannula capable of expansion and/or contraction having an elongate body with a distal end and a proximal end. The adjustable cannula can be coupled to an upper housing and a lower housing such that rotation of the upper housing results in expansion or contraction of the adjustable cannula. The adjustable cannula can also have a proximal end having a lumen larger than a distal end lumen. A plurality of flanges can be formed in the elongate body by a plurality of slits that span a majority of a length of the cannula, including along or proximate to its proximal end and distal end.
Abstract:
A portable surgical tray unit can include a portable surgical tray for housing a processing unit, and that includes an opening extending entirely therethrough. The portable surgical tray unit can also include a plurality of instruments connected to the portable surgical tray and operably coupled to the processing unit, and a user input device positioned on at least one of the instruments. The user input device can be operably coupled to the processing unit and can be configured to receive a user input for controlling an operating parameter of one or more of the instruments. The processing unit can be configured to receive user input through the user input device and transmit an operating command to the one or more instruments. The portable surgical tray and the plurality of instruments can be sterilized and prepackaged in a single package.
Abstract:
Illumination systems are described that can include one or more light sources, which can include LEDs, one or more lenses, and one or more optical fibers. A handheld, portable, and surgical intraocular illumination system is disclosed that is disposable, low-cost, and efficient. A surgeon can have direct control of turning the illuminator on and off and adjusting the intensity via a simple control ergonomically placed on the handpiece and/or voice activated control. A coupling is provided, such as through an endo-probe, which is coupled to the one or more light sources. A user input device can be included that is operable to transmit to a feedback controller a first signal based on a user-selected light intensity. The feedback controller can, in response to the first signal, transmit a second signal to the power source for altering the power provided by the power source to the illumination system.
Abstract:
A personal surgical center embodied as a general purpose computer (e.g. laptop) with wireless technology for monitoring the operation of an independent surgical center and/or handheld instruments. The computer tracks procedures in the operating room and instruments used during those procedures, and accounts for billing, supply management, and payment options. The monitoring of the instruments used during the surgery is conducted by the personal surgical center while actual control of the settings of those instruments is via the independent surgical center or via controls included in the instruments themselves. The monitored information is stored in a log file which is then transmitted to a hospital server for generating reports, inventory control, billing, and the like. Other information generated during the procedure (e.g. doctor notes) is also stored in the log file. The personal surgical center may also access the hospital server or local data storage device for retrieving a surgeon's specific surgery parameters, obtaining patient files, and the like.
Abstract:
Electric vitrectomy handpieces are provided. The handpiece includes a motor, a clutch mechanism, an oscillating drive mechanism, a cutting tip and a handle. The motor is attached to the clutch, and the clutch is attached to the oscillating drive mechanism. When the motor is operational, the clutch expands to engage the oscillating drive mechanism and the oscillating drive mechanism converts the rotational motion of the clutch to the reciprocating motion of the cutting tip. When the motor is at rest, the clutch retracts to allow aspiration.
Abstract:
Automated sharing of control of a single tuner amongst multiple video consuming entities. One of the video consuming entities is assigned to be primary, thereby allowing seamless control over the channel tuned by the tuner. Another of the video consuming entities is assigned to be secondary, which prohibits the seamless control of the channel tuned by the tuner (at least while the assignment of secondary applies to the secondary video consuming entity). Promotion rules are applied to determine whether or not the secondary video consuming entity should be promoted to primary. The promotion rules only allow one video consuming entity at a time to be assigned as primary for the tuner. If appropriate, the secondary video consuming entity is then promoted to primary. The promotion rules may enforce any desired policy regarding conflict resolution on the tuner.