Abstract:
An illumination assembly including a thermally conductive substrate, a reflective layer proximate a first major surface of the thermally conductive substrate, a patterned conductive layer positioned between the reflective layer and the first major surface of the thermally conductive substrate and electrically isolated from the thermally conductive substrate, and at least one LED including a post that is attached to the thermally conductive substrate is disclosed. The at least one LED can be thermally connected to the thermally conductive substrate through the post and electrically connected to the patterned conductive layer.
Abstract:
An illumination assembly includes a heat dissipating member having a plurality of circuitized strips disposed thereon a spaced relationship. Each circuitized strip includes an electrically insulative substrate having at least one circuit trace on a first side of the substrate and an electrically and thermally conductive layer on a second side of the substrate, such that the at least one circuit trace is electrically insulated from the second side of the substrate. The circuitized strips have a plurality of vias extending from the first side to the second side of the substrate. A plurality of LEDs are disposed in the plurality of vias, such that each LEDs is disposed on the electrically and thermally conductive layer on the second side of the substrate and electrically connected to the at least one circuit trace on the first side of the substrate.
Abstract:
A backlight is disclosed and includes a visible light transmissive body primarily propagating light by TIR with a light input surface and a light output surface and a light guide portion and a light input portion. The light guide portion has a light reflection surface and a light emission surface. The light input portion has opposing side surfaces that are not parallel. One of the opposing surfaces is co-planar with either the light emission surface or the light reflection surface. A light source is disposed adjacent to the light input surface. The light source emits light into the light input portion. A reflective layer is disposed adjacent to or on the opposing side surfaces.
Abstract:
An LED assembly may include a substrate, an elongate mounting structure that is formed in or on the substrate, and an LED that is mechanically secured to the elongate mounting structure. A light producing apparatus may include a substrate, an elongate mounting structure that may be formed in or on the substrate, and a plurality of LEDs that may be removably secured to the elongate mounting structure. A light producing array may include a substrate, a first elongate mounting structure that is formed in or on the substrate, and a second elongate mounting structure that is formed in or on the substrate. A first plurality of LEDs may be removably secured to the first elongate mounting structure. A second plurality of LEDs may be removably secured to the second elongate mounting structure.
Abstract:
A radiation curing apparatus comprises a plurality of solid state radiation sources to generate radiation that cures a first material. The solid state radiation sources can be disposed in an array pattern. Optical concentrators, arranged in a corresponding array pattern, receive radiation from corresponding solid state radiation sources. The concentrated radiation is received by a plurality of optical waveguides, also arranged in a corresponding array pattern. Each optical waveguide includes a first end to receive the radiation and a second end to output the radiation. The curing apparatus can be utilized for continuous substrate, sheet, piece part, spot curing, and/or 3D radiation-cure processes.
Abstract:
A backlight for a stereoscopic 3D liquid crystal display apparatus includes a light guide formed from a plurality of segments. Each segment has a first side and a second side opposite the first side, and a first surface extending between the first and second sides and a second surface opposite the first surface. The first surface substantially re-directs light and the second surface substantially transmits light. The plurality of segments are arranged substantially in parallel with the second surfaces transmitting light in substantially the same direction to provide backlighting for a stereoscopic 3D liquid crystal display. A light source is disposed along only one of the first side or second side of each segment for transmitting light into the light guide from either the first side or second side. Each segment light source is selectively turned on and off in a particular pattern.
Abstract:
A scanning backlight for a stereoscopic 3D liquid crystal display apparatus includes a light guide formed from a plurality of segments. Each segment has a first side and a second side opposite the first side, and a first surface extending between the first and second sides and a second surface opposite the first surface. The first surface substantially re-directs light and the second surface substantially transmits light. The plurality of segments are arranged substantially in parallel and with the second surfaces transmitting light in substantially the same direction to provide backlighting for a stereoscopic 3D liquid crystal display. A first light source is disposed along the first side of each segment for transmitting light into the light guide from the first side, and a second light source is disposed along the second side of each segment for transmitting light into the light guide from the second side. Each segment first and second light source is selectively turned on and off in a particular pattern and each segment light source selectively transmits light into the light guide first side or light guide second side to form a scanning backlight.
Abstract:
A backlight may include a light guide and a light input. The light guide may have a light reflection surface and a light emission surface. The light input may include a diverging wedge having a narrow end and opposing side surfaces extending to the narrow end. A light source well may be formed in the light input, and a light source may be disposed within the light source well. An encapsulant may be disposed about the light source, within the light source well. A specularly reflective film or layer may be disposed adjacent to but not in intimate contact with the opposing side surfaces and may reflect more than 80% of visible light incident on the multilayer polymeric mirror film.
Abstract:
Methods for producing phosphor based light sources are disclosed. One method includes measuring an excitation light output of an LED, forming a plurality of phosphor film articles, measuring an optical characteristic of each of the plurality of phosphor film articles, selecting one of the plurality of phosphor film articles based on the LED excitation light output and measured optical characteristic of the one of the plurality of phosphor film articles to obtain a desired emission light output from the phosphor film article when the phosphor film article is positioned to receive the excitation light, and positioning the phosphor film article to receive the excitation light.
Abstract:
A photon emitting device comprises a plurality of solid state radiation sources to generate radiation. The solid state radiation sources can be disposed in an array pattern. Optical concentrators, arranged in a corresponding array pattern, receive radiation from corresponding solid state radiation sources. The concentrated radiation is received by a plurality of optical waveguides, also arranged in a corresponding array pattern. Each optical waveguide includes a first end to receive the radiation and a second end to output the radiation. A support structure is provided to stabilize the plurality of optical waveguides between the first and second ends. The photon emitting device can provide a replacement for a discharge lamp device in various applications including road illumination, spot lighting, back lighting, image projection and radiation activated curing.