Abstract:
FIG. 1 is a perspective view of a LED lamp, showing my new design; FIG. 2 is a another perspective view thereof; FIG. 3 is a front elevational view thereof; FIG. 4 is a rear elevational view thereof; FIG. 5 is a left side elevational view thereof; FIG. 6 is a right side elevational view thereof; FIG. 7 is a top plan view thereof; and, FIG. 8 is a bottom plan view thereof. The broken lines in the drawings depict portions of the LED lamp that form no part of the claimed design.
Abstract:
FIG. 1 is a perspective view of a LED lamp showing my new design; FIG. 2 is another perspective view thereof; FIG. 3 is a front elevational view thereof; FIG. 4 is a rear elevational view thereof; FIG. 5 is a left side elevational view thereof; FIG. 6 is a right side elevational view thereof; FIG. 7 is a top plan view thereof; FIG. 8 is a bottom plan view thereof; and FIG. 9 is a perspective view of a LED lamp where the LED lamp is in a configuration of use; and, FIG. 10 is a cross-sectional view taken along line 10-10 shown in FIG. 3. The dash-dash broken lines in the drawings depict portions of the LED lamp that form no part of the claimed design. The dot-dash broken lines represent the boundary of the enlarged portion and form no part of the claimed design.
Abstract:
A semiconductor structure includes a work function metal layer, a (work function) metal oxide layer and a main electrode. The work function metal layer is located on a substrate. The (work function) metal oxide layer is located on the work function metal layer. The main electrode is located on the (work function) metal oxide layer. Moreover a semiconductor process forming said semiconductor structure is also provided.
Abstract:
Methods herein include mixing at least one polyester resin with at least one solvent to form a resin mixture, adding water to cause phase inversion and form a polyester latex, adding at least one buffering agent to the phase inverted mixture to stabilize the phase inverted mixture, and subsequent to the buffering agent addition, substantially removing the at least one solvent from the phase inverted mixture.
Abstract:
The invention is directed to stable crosslinked water-soluble swellable polymers and methods for making same. More particularly, the invention relates to a composition comprising expandable polymeric particles having anionic sites and labile crosslinkers and stable crosslinkers, said particle mixed with a fluid and a cationic crosslinker that is capable of further crosslinking the particle on degradation of the labile crosslinker and exposure of the anionic sites so as to form a gel. A particularly important use is as an injection fluid in petroleum production, where the expandable polymeric particles are injected into target zone and when the heat and/or suitable pH of the target zone cause degradation of the labile crosslinker and the particle expands, the cationic crosslinker crosslinks the polymer to form a gel, thus diverting water to lower permeability regions and improving oil recovery.
Abstract:
A display device and a method of measuring a surface structure of the same are provided. The display device includes first and second substrates, first and second patterned light-shielding layers, and first and second pixel units. The first patterned light-shielding layer disposed on a surface of the first substrate includes first openings. The second patterned light-shielding layer disposed on the surface of the first substrate in the first patterned light-shielding layer includes second openings. The first pixel unit includes first and second protrusions. The first protrusion correspondingly covers the first openings and a portion of the first patterned light-shielding layer. The second protrusion is disposed in the first and second patterned light-shielding layers. The second pixel unit includes a third protrusion correspondingly covering the second openings and a portion of the second patterned light-shielding layer, wherein sizes of the second openings are smaller than sizes of the first openings.
Abstract:
The present disclosure provides processes for reducing the particle size of latex resins and toners produced with such resins. In embodiments, a carboxylic acid may be added to materials utilized to produce a latex and reduce the particle size of the resulting latex particles and toner particles. In accordance with the present disclosure, one may be able to utilize materials for the production of latex resins and toners which may otherwise produce particles that are too large in the absence of the carboxylic acid.
Abstract:
A portable electronic device includes a body and a support structure. The support structure pivotally connected to the body includes a first structural member and a second structural member, and the first structural member is pivotally connected to the body along a first axis. The second structural member pivotally connected to the first structural member along a second axis includes a first support region and a second support region. The combination of the first structural member and the second structural member rotates around the first axis towards or away from the body, and when it rotates away from the body, the first support region leans against a first support surface. The second structural member rotates around the second axis towards or away from the body, and when it rotates away from the body, the second support region leans against the support surface.
Abstract:
The present invention discloses a nanowire fabrication method and a semiconductor element using a nanowire fabricated thereby. The method of the present invention comprises steps: providing a substrate; sequentially depositing a silicon dioxide layer and a silicon nitride layer on the substrate; forming a patterned photoresist layer on the silicon nitride layer; using the patterned photoresist layer as a mask to etch the silicon nitride layer and the silicon dioxide layer with the substrate partly etched away to form a protrusion; removing the patterned photoresist layer to form an isolation layer; removing the silicon nitride and the silicon dioxide layer, sequentially depositing a dielectric layer and a polysilicon layer; and anisotropically etching the polysilicon layer to form nanowires on a region of the dielectric layer, which is around sidewalls of the protrusion.
Abstract:
The invention is directed to crosslinked water-soluble swellable polymers, methods for making same and their various uses. More particularly, the invention relates to a composition comprising expandable polymeric particles being made with 0.1-5% hydrophobic monomers and labile crosslinkers and stable crosslinkers, said particles mixed with a fluid. A particularly important use is as an injection fluid in petroleum production, where the expandable polymeric particles are injected into a well and when the heat and/or pH of the target zones in the formation cause degradation of the labile crosslinker and when the particle expands, the hydrophobic groups associate to form a hydrophobically associative polymer, thus diverting water to lower permeability regions and improving oil recovery.