Abstract:
The present invention provides a cloth seal for use with turbine components. The cloth seal may include a number of cloth layers, a shim positioned between the cloth layers, and an end seal positioned at an end of the cloth layers so as to block a leakage flow path through at least one of the cloth layers.
Abstract:
According to one aspect of the invention, a shim for sealing two adjacent turbine transition pieces is disclosed. The shim includes a circumferential member that includes a first lateral flange and a second lateral flange. Further, the first and second lateral flanges each comprise a tab configured to mate to a first surface plane and the first and second lateral flanges are configured to mate to a second surface plane, wherein the first and second surface planes are substantially parallel. In addition, the shim includes a first flange extending substantially perpendicular from the circumferential member.
Abstract:
A brush seal assembly for turbomachinery having a rotor can include a stationary seal component, a floating seal component coupled to the stationary seal component and circumferentially angled bristles arranged in a bristle pack, disposed in the floating seal component and extended axially with respect to the rotor.
Abstract:
According to one aspect of the invention, a shim for sealing two adjacent turbine transition pieces is disclosed. The shim includes a circumferential member that includes a first lateral flange and a second lateral flange. Further, the first and second lateral flanges each comprise a tab configured to mate to a first surface plane and the first and second lateral flanges are configured to mate to a second surface plane, wherein the first and second surface planes are substantially parallel. In addition, the shim includes a first flange extending substantially perpendicular from the circumferential member.
Abstract:
A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having one or more labyrinth teeth therebetween facing the rotor. The sealing device includes a stator interface element having a groove or slot for allowing disposal of a spline seal for preventing segment leakages. The sealing device segment also includes multiple bellow springs or flexures connected to the shoe plate and to the stator interface element. Further, the sealing device segments include a secondary seal integrated with the stator interface element at one end and positioned about the multiple bellow springs or flexures and the shoe plate at the other end.
Abstract:
A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having one or more labyrinth teeth therebetween facing the rotor. The sealing device includes a stator interface element having a groove or slot for allowing disposal of a spline seal for preventing segment leakages. The sealing device segment also includes multiple bellow springs or flexures connected to the shoe plate and to the stator interface element. Further, the sealing device segments include a secondary seal integrated with the stator interface element at one end and positioned about the multiple bellow springs or flexures and the shoe plate at the other end.
Abstract:
A seal assembly for a rotary machine is provided. The seal assembly includes a shim seal including multiple seal plates forming a C-shaped shim seal or a box shaped shim seal. The C-shaped shim seal includes a first side portion having a smaller width than that of an opposing second side portion, and the second side portion of the C-shaped shim seal includes a gap between at least two straight faces with an inward angle for allowing positioning within the slot between stator components. The box shaped seal includes a plurality of cuts at two opposing sides or corners for allowing high pressure fluid to occupy the cavity of the box-shaped shim seal. The seal may be inserted within one or more slots between adjacent stator components of the rotary machine.
Abstract:
According to one aspect of the invention, an assembly to be placed between adjacent turbomachinery components is provided, where the assembly includes a first shim comprising a U-shaped cross-section geometry, wherein the first shim is configured to form a seal between adjacent components. The assembly also includes an insert placed within a recess of the U-shaped cross-section geometry of the first shim and a plurality of staggered couplings between the insert and the first shim.
Abstract:
The present application provides a sealing assembly for use with a transition piece and a stage one nozzle of a gas turbine engine. The sealing assembly may include a seal element, an overlay piece positioned on the seal element, and a side seal positioned on the overlay piece.
Abstract:
The present application provides a seating assembly for use with a transition piece and a stage one nozzle of a gas turbine engine. The seating assembly may include a support member positioned between the transition piece and the stage one nozzle and a primary spring element positioned on the support member and in contact with the stage one nozzle. The primary spring element may include a single bend therein.