Abstract:
A method and apparatus for recovery from faults in a loop network (400) is provided. The loop network (400) has a host means (402), a first loop and a second loop (406, 408), a plurality of ports (410) connected to each of the loops (406, 408) and a control device (414, 440) on or connected to each loop (406, 408) with bypass control over at least one of the ports (410) connected to the loop (406, 408). In the event of a failure on the first loop (406), the host means (402) instructs the bypassing of at least one port (410) on the first loop (406), the host means (402) sending the instructions via the control device (414, 440) on or connected to the second loop (408). The host means (402) may determine the physical topology of the ports (410) on the first and second loops (406, 408) such that when a failure is reported to the host means (402) by a port (432) on the first loop (406), the host means (402) instructs the bypassing of a port (434) in a specific relationship to the reporting port (432) on the first loop (434). The host means (402) may instruct the bypassing of all ports (416) on the first loop (406) and subsequently selectively un-bypass ports (416) to ascertain the location of a faulty port or ports.
Abstract:
A method and apparatus are provided for fault location in a loop network (100, 200, 400). The network system having a host port (214) for supplying and receiving data and a plurality of successively connected ports (201, 202, 203, 204, 205) through which data from the host port (214) is transferred. A counter (122) for each port records data transfers in which the amount of data received at a destination port is less than an expected amount of data. When a transfer with less than the expected amount of data is identified for a data flow between a sending port (201) and a destination port (214), the counters are incremented for each port (202, 203, 204, 205, 214) after the sending port up to and including the destination port. Analysing means determines a fault location in the network system from the distribution of counts in the counters (122).
Abstract:
A system and method for improved photovoltaic module structure is described. One embodiment includes a photovoltaic module comprising a front substrate, a photovoltaic structure attached to the front substrate, wherein the photovoltaic structure comprises at least one photovoltaic cell, a back substrate, wherein the back substrate is spaced apart from the photovoltaic structure, and a structural component, wherein the structural component is located between the back substrate and the photovoltaic structure. In some embodiments, the structural component may be configured to provide thermal conduction between the front substrate and the back substrate, and/or the structural component may be configured to retain the front substrate and/or back substrate during breakage.
Abstract:
This invention relates to apparatus and a method for connecting a pin array and a circuit board. In particular, the invention relates to pin array connections used in connecting disk drives into disk drive enclosures. Connection is accomplished by using a multi-pinned plug connector which sequentially engages conductive surfaces at different levels within the receiving PCB. The plug connector is connected electrically at its opposing end to a second PCB.
Abstract:
A data processing system comprises a host computer connected for the transfer of data to and from a plurality of data storage devices arranged in a string, the host computer including communication means comprising first and second ports connecting to first and second communication links, the first and second communication links being connected respectively to first and second data storage devices of said string. A bypassing means is provided between the first and second ports of the host system and the first and second data storage devices, the bypassing means being comprised of an independent bypass circuit on each of the first and second communication links between each of the first and second ports and the first and second data storage devices, the bypassing means being operable to bypass the host computer by connecting the first and second devices only when both of said independent bypass circuits detect a lack of data transfer on their respective links.
Abstract:
System and method for mounting one or more photovoltaic modules includes one or more flexible rods, including a first end and a second end opposite the first end, each of the one or more flexible rods further including an inner core and a first jacket surrounding the inner core between the first end and the second end. The first end is configured to be attached to at least one photovoltaic module using one or more first adhesive materials. The second end is configured to be inserted into at least one hole of a modular rail and attached to at least the modular rail using one or more second adhesive materials. The one or more flexible rods are configured to allow at least a lateral movement in a first direction between the photovoltaic module and the modular rail and support at least the photovoltaic module in a second direction.
Abstract:
A method and apparatus for detection of a port name in a loop network is provided, particularly a loop network in the form of a Fibre Channel Arbitrated Loop (FC-AL). The loop network (100) has a plurality of devices (120) each device (120) having at least one port (211, 212) on the loop network (100). The method includes determining which ports (211, 212) are populated with devices (120) for which the unique port name (WWPN) is not known. The populated ports are then all bypassed and a mode is entered on the loop network (100) in which idle frames are transmitted around the loop network (100). One port is un-bypassed at a time and the port name from the un-bypassed port is received and recorded. The port name is received from the un-bypassed port in a Loop Initialisation Select Master (LISM) frame transmitted by the un-bypassed port.
Abstract:
An integrated circuit includes electrostatic discharge (ESD) protection circuits coupled to protect I/O pins and or operational circuits from damage due to ESD events. The ESD protection circuits are coupled to fuses which in turn are coupled to external program pin(s) of the IC. The fuses can be opened via the external program pin(s) to substantially completely remove the capacitive loading on the I/O pins as well as any internal circuitry within the IC. The ESD circuits may protect against ESD damage during testing, packaging, shipping and installation into a system, and then be subsequently removed via the external program pins, such as upon first application of power to the IC via the system. Because fuses are used, the added capacitive loading of the deselection circuit is substantially zero and much less than active switching elements. The ESD deselection structure is beneficial for very high frequency RF circuits, where capacitive loading problems are particularly acute.
Abstract:
System and method for mounting one or more photovoltaic modules includes one or more flexible rods, including a first end and a second end opposite the first end, each of the one or more flexible rods further including an inner core and a first jacket surrounding the inner core between the first end and the second end. The first end is configured to be attached to at least one photovoltaic module using one or more first adhesive materials. The second end is configured to be inserted into at least one hole of a modular rail and attached to at least the modular rail using one or more second adhesive materials. The one or more flexible rods are configured to allow at least a lateral movement in a first direction between the photovoltaic module and the modular rail and support at least the photovoltaic module in a second direction.
Abstract:
A method and apparatus for detection of a port name in a loop network is provided, particularly a loop network in the form of a Fibre Channel Arbitrated Loop (FC-AL). The loop network (100) has a plurality of devices (120) each device (120) having at least one port (211, 212) on the loop network (100). The method includes determining which ports (211, 212) are populated with devices (120) for which the unique port name (WWPN) is not known. The populated ports are then all bypassed and a mode is entered on the loop network (100) in which idle frames are transmitted around the loop network (100). One port is un-bypassed at a time and the port name from the un-bypassed port is received and recorded. The port name is received from the un-bypassed port in a Loop Initialisation Select Master (LISM) frame transmitted by the un-bypassed port.