Abstract:
The light sensor is included on an optical device having a waveguide on a base. The waveguide is configured to guide a light signal through a crystalline light-transmitting medium. The light sensor is also positioned on the base and is configured to receive the light signal from the waveguide. The light sensor includes a planar interface between two different materials. The interface is at a 45° angle relative to a direction of the light-transmitting medium.
Abstract:
Gyroscopic input systems and methods are provided. A gyroscopic input apparatus (100) can include a rigid surface (110) having an aperture (120) disposed therein. An input surface (130) can be flexibly attached to the rigid surface via a flexible member (140). The input surface can be disposed proximate at least a portion of the aperture. A gyroscopic sensor (150) can be operatively connected to the input surface.
Abstract:
The system includes a light-transmitting medium positioned on a base. The light-transmitting medium included a ridge and a slab region. The ridge extends upward from the slab region and defines a portion of a waveguide on the base. The waveguide is configured to guide a light signal through the device. The device also includes an avalanche effect light sensor positioned on the base and configured to detect the presence of the light signal. The light sensor includes a light-absorbing medium positioned on the ridge of the light-transmitting medium such that the light signal is coupled from the light-transmitting medium into the light-absorbing medium. The light-transmitting includes a charge layer located at an interface of the light-transmitting medium and the light-absorbing medium. A multiplication region is formed in the slab regions of the light-transmitting medium such that the multiplication region receives charge carriers from the charge layer during the operation of the light sensor.
Abstract:
The mode transforming structure includes a first waveguide structure. A slot waveguide region is coupled to the first waveguide structure. The slot waveguide region includes one or more complementary tapered pairs so near lossless transforming between the first waveguide structure and the slot waveguide region occurs so as to allow optical modes to be transferred between the first waveguide and the slot waveguide region.
Abstract:
An optical field concentrator includes a plurality of waveguide layers comprising high index materials having a first defined thickness. At least one nano-layer structure is positioned between said waveguide layers. The at least one nano-layer structure comprises low index materials having a second defined thickness that is smaller than the first defined thickness. A plurality of cladding layers are positioned between the waveguide layers and the at least one nano-layer structure. The cladding layers have a third defined thickness that is larger than the first defined thickness.
Abstract:
The ring resonator includes waveguides configured to guide light signals. The waveguides include an input waveguide and one or more loop waveguides. One of the loop waveguides is a primary loop waveguide that is optically coupled with the input waveguide at a wavelength of light. A tuner is configured to tune the wavelength at which the light is optically coupled from the input waveguide into the primary loop waveguide. One or more light detectors are each configured to provide an output indicating an intensity of light guided in one of the one or more loop waveguides. Electronics are configured to tune the tuner in response to the output from the light detector.
Abstract:
A MOS transistor (60, 62) is provided. The structure of the transistor (60, 62) includes: a semiconductor substrate (10), a channel area (20, 24), source/drain regions (22, 26), a gate (30, 32), a gate insulating layer (11), a shallow trench isolation region (12), a passive layer (50, 52), and holes (40, 42) formed with a certain distance to the gate insulating layer (11). Wherein both the shapes of the holes (40, 42) and the Young's modulus' difference between the material in the holes (40, 42) and that around the holes (40, 42) contribute to the stress concentration effect, thus the stress in the channel area (20, 24) is enhanced. The structure of the transistor (60, 62) can greatly reduce the stress attenuation during the transmission from stress resource to the sensitive region, and concentrate the stress in the sensitive region. The structure can be involved in large size device, especially.
Abstract:
Computer devices are described herein. The computer devices include a keyboard body including a keyboard and a display body including a display. The computer devices are foldable to a closed position. A display protector is attached to the keyboard body so as to protect the display by contact therewith. Further, methods of preventing damage to a display are also described herein.
Abstract:
Gyroscopic input systems and methods are provided. A gyroscopic input apparatus (100) can include a rigid surface (110) having an aperture (120) disposed therein. An input surface (130) can be flexibly attached to the rigid surface via a flexible member (140). The input surface can be disposed proximate at least a portion of the aperture. A gyroscopic sensor (150) can be operatively connected to the input surface.
Abstract:
The optical device includes a waveguide and a light sensor on a base. The light sensor includes a light-absorbing medium configured to receive a light signal from the waveguide. The light sensor also includes field sources for generating an electrical field in the light-absorbing medium. The field sources are configured so the electrical field is substantially parallel to the base.