Abstract:
A projection objective of a microlithographic projection exposure apparatus contains a plurality of optical elements arranged in N>−2 successive sections A1 to AN of the projection objective which are separated from one another by pupil planes or intermediate image planes. According to the invention, in order to correct a wavefront deformation, at least two optical elements each have an optically active surface locally reprocessed aspherically. A first optical element is in this case arranged in one section Aj, j=1 . . . N and a second optical element is arranged in another section Ak, k=1 . . . N, the magnitude difference |k−j| being an odd number.
Abstract:
A microlithographic projection exposure apparatus includes a projection light source, a heating light source, a catoptric projection lens and a reflecting switching element, which can be arranged outside of the projection lens and can be displaced between a first position and a second position via a drive. Only the projection light can enter the projection lens in the first position of the switching element, and only the heating light can enter the projection lens in the second position of the switching element.
Abstract:
A microlithographic projection exposure apparatus comprises a projection objective which images an object onto an image plane and has a lens with a curved surface. In the projection objective there is a liquid or solid medium which directly adjoins the curved surface over a region which is usable for imaging the object. The projection exposure apparatus also has an adjustable manipulator for reducing an image field curvature which is caused by heating of the medium during the projection operation.
Abstract:
A lithography projection objective for imaging a pattern to be arranged in an object plane of the projection objective onto a substrate to be arranged in an image plane of the projection objective comprises a multiplicity of optical elements that are arranged along an optical axis of the projection objective. The optical elements comprise a first group, following the object plane, of optical elements, and a last optical element, which follows the first group and is next to the image plane and which defines an exit surface of the projection objective and is arranged at a working distance from the image plane. The projection objective is tunable or tuned with respect to aberrations for the case that the volume between the last optical element and the image plane is filled by an immersion medium with a refractive index substantially greater than 1. The position of the last optical element is adjustable in the direction of the optical axis. A positioning device is provided that positions at least the last optical element during immersion operation such that aberrations induced by disturbance are at least partially compensated.
Abstract:
A projection objective of a microlithographic projection exposure apparatus contains a plurality of optical elements arranged in N≧2 successive sections A1 to AN of the projection objective which are separated from one another by pupil planes or intermediate image planes. According to the invention, in order to correct a wavefront deformation, at least two optical elements each have an optically active surface locally reprocessed aspherically. A first optical element is in this case arranged in one section Aj, j=1 . . . N and a second optical element is arranged in another section Ak, k=1 . . . N, the magnitude difference |k−j| being an odd number.
Abstract:
The disclosure provides a microlithography projection objective which includes a plurality of optical elements along the optical axis of the projection objective. The plurality of optical elements includes a last optical element and a penultimate optical element. A distance between the last optical element and the penultimate optical element is variable. The disclosure also provides a microlithography projection exposure machine including such a projection objective, and a method of making semiconductor components using such a projection exposure machine.
Abstract:
A microlithographic projection exposure apparatus comprises a projection objective which images an object onto an image plane and has a lens with a curved surface. In the projection objective there is a liquid or solid medium which directly adjoins the curved surface over a region which is usable for imaging the object. The projection exposure apparatus also has an adjustable manipulator for reducing an image field curvature which is caused by heating of the medium during the projection operation.
Abstract:
A lithography projection objective for imaging a pattern to be arranged in an object plane of the projection objective onto a substrate to be arranged in an image plane of the projection objective comprises a multiplicity of optical elements that are arranged along an optical axis of the projection objective. The optical elements comprise a first group, following the object plane, of optical elements, and a last optical element, which follows the first group and is next to the image plane and which defines an exit surface of the projection objective and is arranged at a working distance from the image plane. The projection objective is tunable or tuned with respect to aberrations for the case that the volume between the last optical element and the image plane is filled by an immersion medium with a refractive index substantially greater than 1. The position of the last optical element is adjustable in the direction of the optical axis. A positioning device is provided that positions at least the last optical element during immersion operation such that aberrations induced by disturbance are at least partially compensated.
Abstract:
A lithography projection objective for imaging a pattern to be arranged in an object plane of the projection objective onto a substrate to be arranged in an image plane of the projection objective comprises a multiplicity of optical elements that are arranged along an optical axis of the projection objective. The optical elements comprise a first group, following the object plane, of optical elements, and a last optical element, which follows the first group and is next to the image plane and which defines an exit surface of the projection objective and is arranged at a working distance from the image plane. The projection objective is tunable or tuned with respect to aberrations for the case that the volume between the last optical element and the image plane is filled by an immersion medium with a refractive index substantially greater than 1. The position of the last optical element is adjustable in the direction of the optical axis. A positioning device is provided that positions at least the last optical element during immersion operation such that aberrations induced by disturbance are at least partially compensated.
Abstract:
A microlithographic projection exposure apparatus comprises a projection objective which images an object onto an image plane and has a lens with a curved surface. In the projection objective there is a liquid or solid medium which directly adjoins the curved surface over a region which is usable for imaging the object. The projection exposure apparatus also has an adjustable manipulator for reducing an image field curvature which is caused by heating of the medium during the projection operation.