Abstract:
Laminate structure comprising an alternating stack of layers from polymer blends AC and BD having the sequence -AC-[BD-AC-]n with n from 4 to 36, wherein the layer thickness of layers AC and layers BD is less than 3 μm, wherein A and B are thermoplastic polymers and C and D are thermoplastic elastomers, wherein the thermoplastic polymer B has functional barrier properties, wherein the amount of the thermoplastic elastomers C and D in the polymer blends AC and BD is each from 3 to 45 wt.-%, and polymer B and elastomer D are essentially incompatible.
Abstract:
The present invention discloses a plastic processing roll, comprising a rigid inner cylinder covered at least partially by at least one flexible liner. Said flexible liner comprises a plurality of fluid ducts, each of which being connected to an inflow duct and being connected to an outflow duct. An elastic metal sleeve encases said flexible liner and is designed to be friction-locked by means of pressurizing the fluid ducts. Said flexible liner is formed by a plurality of longitudinal elements being arranged in parallel to each other, wherein each of said longitudinal elements houses at least one of said fluid ducts. Furthermore a plastic processing device and a method for producing double-sided structured plastic films is disclosed.
Abstract:
A UV protective film comprising a base film of PVC, polyacrylate or polyolefin, a printed design, an abrasion resistant polyurethane based hot melt coating, and a lacquer or a polymer protective layer, a method for manufacturing coated construction elements by laminating the UV protective film to a substrate, use of the UV protective film for coating substrates and a process for the production of UV protective films, in which a base film from PVC, polyacrylate or polyolefin is printed with a design, a polyurethane based hot melt coating is applied and a lacquer and/or a polymer protective layer is applied thereover, wherein a layer below the lacquer is embossed.
Abstract:
Biocompatible flexible laminate structure comprising an alternating stack of layers from polymers A and B or polymer blends AC and BD having the sequence -A-[B-A-]n or AC-[BD-AC-]n with n from 4 to 36, wherein the layer thickness of layers A or AC and layers B or BD is less than 3 μm, wherein A and B are thermoplastic polymers and C and D are thermoplastic elastomers, at least part of the monomeric building blocks of polymer A, B or A and B are from renewable sources wherein the thermoplastic polymer B has functional barrier properties, wherein the amount of the thermoplastic elastomers C and D in the polymer blends AC and BD is each from 3 to 45 wt.-%, and polymer B and elastomer D are essentially incompatible.
Abstract:
Laminate structure comprising an alternating stack of layers from polymer blends AC and BD having the sequence -AC-[BD-AC-]n with n from 4 to 36, wherein the layer thickness of layers AC and layers BD is less than 3 μm, wherein A and B are thermoplastic polymers and C and D are thermoplastic elastomers, wherein the thermoplastic polymer B has functional barrier properties, wherein the amount of the thermoplastic elastomers C and D in the polymer blends AC and BD is each from 3 to 45 wt.-%, and polymer B and elastomer D are essentially incompatible.
Abstract:
The present invention discloses a plastic processing roll, comprising a rigid inner cylinder covered at least partially by at least one flexible liner. Said flexible liner comprises a plurality of fluid ducts, each of which being connected to an inflow duct and being connected to an outflow duct. An elastic metal sleeve encases said flexible liner and is designed to be friction-locked by means of pressurizing the fluid ducts. Said flexible liner is formed by a plurality of longitudinal elements being arranged in parallel to each other, wherein each of said longitudinal elements houses at least one of said fluid ducts. Furthermore a plastic processing device and a method for producing double-sided structured plastic films is disclosed.
Abstract:
A composite multilayer panel, includes a core having at least one layer made of a polyolefin or polyester or PVC based material filled with fibers and/or fillers and/or particles, the core being provided at least on one side with a wear resistant covering layer, which is coupled to the core by lamination, the panel being made of a moisture resistant composite thermoplastic material.
Abstract:
Method for manufacturing oxaphosphaphenantrene oxide acrylate monomers by Phospha-Michael addition to acrylates, which comprises reacting oxaphosphaphenantrene oxide with an α,ω-alkyl diol diacrylate in a molar ratio of 1:1.5 to 1:10 in the presence of a base and a polymerisation inhibitor at temperatures from 70 to 120° C. and unreacted α,ω-alkyl diol diacrylate is separated off, monomers obtainable with the method and their use for manufacturing flame retardant thermoplastic (meth)acrylate polymers and method for manufacturing flame retardant thermoplastic (meth)acrylate polymers with the monomers, polymers obtainable in this way and their use for manufacturing transparent films and panels.
Abstract:
Laminate structure comprising an alternating stack of layers from polymer blends AC and BD having the sequence -AC-[BD-AC-]n with n from 4 to 36, wherein the layer thickness of layers AC and layers BD is less than 3 μm, wherein A and B are thermoplastic polymers and C and D are thermoplastic elastomers, wherein the thermoplastic polymer B has functional barrier properties, wherein the amount of the thermoplastic elastomers C and D in the polymer blends AC and BD is each from 3 to 45 wt.-%, and polymer B and elastomer D are essentially incompatible.
Abstract:
Biocompatible flexible laminate structure comprising an alternating stack of layers from polymers A and B or polymer blends AC and BD having the sequence -A-[B-A-]n- or AC-[BD-AC-]n with n from 4 to 36, wherein the layer thickness of layers A or AC and layers B or BD is less than 3 μm, wherein A and B are thermoplastic polymers and C and D are thermoplastic elastomers, at least part of the monomeric building blocks of polymer A, B or A and B are from renewable sources wherein the thermoplastic polymer B has functional barrier properties, wherein the amount of the thermoplastic elastomers C and D in the polymer blends AC and BD is each from 3 to 45 wt.-%, and polymer B and elastomer D are essentially incompatible.