Abstract:
A grain moisture sensor is disclosed having a sensor cell that includes a driven plate, a sense plate proximate to and substantially parallel with the driven plate for capacitive measurement across a spacing between the driven plate and the sense plate, and a fill plate adjacent the sense plate and substantially parallel with the driven plate for sensing whether the spacing is filled with grain. Optionally, the sensor cell includes a guard proximate to the parallel to the sense plate such that the sense plate is between the driven plate and the guard. The grain moisture sensor provides for measuring real and imaginary components of an excitation voltage applied to the driven plate, measuring real and imaginary components of a sense current sensed at the sense plate, calculating a complex admittance of the cell, calculating a complex admittance of a reference admittance, and calculating a grain complex permittivity.
Abstract:
A method of measuring viscous and elastic properties of a gluten-containing substance includes: bringing the gluten-containing substance into a powder, adding a predetermined amount of aqueous liquid to a predetermined amount of the powder, kneading the powder and liquid to a dough to develop the viscoelastic character of the gluten in the dough—and extracting viscoelastic gluten from the dough by rinsing with the liquid. The method further includes: shaping the gluten, placing the shaped gluten between two parallel planar surfaces, compressing the gluten by moving the planar surfaces towards each other at a controlled rate, until a maximum compression force or a minimum spacing is reached, releasing the force on the planar surfaces so that these can move away from each other due to elastic recovery of the compressed gluten, measuring the distance between the planar surfaces during the compression and elastic recovery of the gluten, and storing the measured values.
Abstract:
A grain moisture sensor having a sensor cell that includes a driven plate, a sense plate proximate to and substantially parallel with the driven plate for capacitive measurement across a spacing between the driven plate and the sense plate, and a fill plate adjacent the sense plate and substantially parallel with the driven plate for sensing whether the spacing is filled with grain. The grain moisture sensor provides for measuring real and imaginary components of an excitation voltage applied to the driven plate, measuring real and imaginary components of a sense current sensed at the sense plate, calculating a complex admittance of the cell, calculating a complex admittance of a reference admittance, and calculating a grain complex permittivity.
Abstract:
An automatic control system for a vehicular liquid sprayer includes a control circuit for receiving a liquid pressure signal and a vehicle ground speed signal and operator accessible controls for delivering to the control circuit signals corresponding to a desired application rate, to the number of nozzles associated with the vehicular liquid sprayer and to the nozzle spacing. The operator may vary the input signal corresponding to desired application rate plus or minus a given percentage to compensate for tolerances in the liquid sprayer system. The control circuit calculates the liquid pressure necessary to achieve the desire application rate and the difference between this desire liquid pressure and the measured liquid pressure and produces control signals corresponding to this difference. A duty cycle control circuit converts these control signals to a cyclical control signal for driving a motor-driven flow control valve. The duty cycle of this cyclical control signal varies in proportion to the magnitude of the pressure difference. This duty cycle controlled signal is automatically modified to overcome inertia and motor lag time in a motor driven flow control valve, and to shut off the valve at a given minimum operating pressure.
Abstract:
A grain moisture sensing system having an excitation signal source for producing an excitation signal. A sensor cell having a driven plate and a sense plate that applies to the excitation signal for captive measurement between the driven plate and the sense plate to produce a current at the sense plate. Connected to the excitation source is a first synchronous detector and connected to the sense plate is a second synchronous detector.
Abstract:
A method of measuring viscous and elastic properties of a gluten-containing substance includes: bringing the gluten-containing substance into a powder, adding a predetermined amount of aqueous liquid to a predetermined amount of the powder, kneading the powder and liquid to a dough to develop the viscoelastic character of the gluten in the dough- and extracting viscoelastic gluten from the dough by rinsing with the liquid. The method further includes: shaping the gluten, placing the shaped gluten between two parallel planar surfaces, compressing the gluten by moving the planar surfaces towards each other at a controlled rate, until a maximum compression force or a minimum spacing is reached, releasing the force on the planar surfaces so that these can move away from each other due to elastic recovery of the compressed gluten, measuring the distance between the planar surfaces during the compression and elastic recovery of the gluten, and storing the measured values.
Abstract:
A sample holding apparatus (20) and method for use with an optical analyzing assembly (10) for irradiating a sample (33) with light energy. The sample holder apparatus (20) comprises a sample container (30) having a downwardly facing container opening (44), and a partition (32) movably positioned over the opening (44). A container support (24) is positioned adjacent the partition (32) and includes a surface (26) having an analyzing window (28) for transmitting the light energy therethrough. The container (30) is movably mounted to a transport mechanism (36) which permits the partition (32) to slidably retract from a closed position, across the opening (44), to an open position as the container (30) is urged onto the support surface (26). Consequently, the sample (33) contained in the container (30) is exposed and drawn into direct contact with the analyzing window (28). The wall members (38) of the container (30) retain the particulates of the sample (33) in substantially a same position during the relative movement.
Abstract:
A soil test apparatus for field use comprises structure adapting the apparatus for transport over a field for testing the soil thereof; an infrared radiation generator for producing infrared radiation at a plurality of predetermined wavelengths, an elongate light carrying member coupled to the infrared radiation generator and extending therefrom for directing infrared radiation onto the soil; and a light detector for detecting infrared radiation reflected from the soil and for producing corresponding electrical signals.
Abstract:
A test apparatus for determining a given property, by weight, such as moisture content, of a material such as a grain or the like, comprises a chamber for receiving a sample of material to be tested, having an open top portion through which the material may be introduced therein for testing. An electrical circuit is operatively coupled with the chamber for producing an electrical measurement signal corresponding to the property to be determined and an indicator provides an observable indication of the given property of material in accordance with the corresponding electrical measurement signals. A measurement initiating control in responsive to the accumulation of a predetermined measurement weight of material in the chamber for initiating the operation of the circuit. A further warning control is responsive to the weight of material in the chamber reaching a second, predetermined warning weight slightly less than the predetermined measurement weight for producing a warning signal. The indicator is responsive to the warning signal for producing a warning indication for alerting the operator to introduce material into the chamber more slowly to thereby reduce the inertia of material entering the chamber as the measurement weight is approached, to facilitate accuracy of the determination of the given property of material, by weight.
Abstract:
A monitoring apparatus for a vehicle such as a tractor comprises a console including controls and a control circuit for calculating wheel slippage of at least one drive wheel of the vehicle and responsive to engine RPM of the vehicle and to the rotational speed of the drive wheel for calculating a predetermined relationship therebetween. The control circuit is also responsive to actuation of the controls for setting the calculated relationship equal to a predetermined reference value when there is substantially no load on the vehicle, and hence minimum slippage of the drive wheel, in each of a plurality of ranges of gear ratios of the vehicle, thereby calibrating the control circuit to calculate wheel slippage for each of these ranges of gear ratios. The console also mounts an observable indicator and the control circuit also calculates other variables such as vehicle speed and engine RPM and actuates the observable indicator when the calculated values deviate from preselected values.