Abstract:
A multicast optical switch includes a free-space optical assembly of discrete splitters, cylindrical optics, and a linear array of reflective switching devices, such as microelectromechanical systems (MEMS) mirrors, to provide low-loss, high-performance multicast switching in a compact configuration. The assembly of optical splitters may include multiple planar lightwave circuit splitters or a multi-reflection beam splitter that includes a linear array of partially reflecting mirrors, each of a different reflectivity.
Abstract:
A delay line interferometer is configured with a liquid-crystal (LC) tuning element as a phase modulator for demodulating a phase-modulated input signal. The LC tuning element allows for quickly tuning the phase difference between two optical signals separated from the phase-modulated input signal, so that the two optical signals can be coherently recombined to interfere with each other and produce one or more intensity-modulated optical signals. In some embodiments, the LC tuning element is configured to reduce polarization-dependent frequency shift without the use of additional high-precision optical elements and/or coatings.
Abstract:
A delay line interferometer is configured with a liquid-crystal (LC) tuning element as a phase modulator for demodulating a phase-modulated input signal. The LC tuning element allows for quickly tuning the phase difference between two optical signals separated from the phase-modulated input signal, so that the two optical signals can be coherently recombined to interfere with each other and produce one or more intensity-modulated optical signals. In some embodiments, the LC tuning element is configured to reduce polarization-dependent frequency shift without the use of additional high-precision optical elements and/or coatings.
Abstract:
A method and apparatus for enhancing performance of a projection system by blocking incident angle light rays without increasing the F-number of the system includes a skew filter having a shaped aperture. The skew filter blocks a substantial portion of the skew light rays while allowing other light rays to pass through the projection system. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
Abstract:
A tunable multiport optical filter includes various types of arrays of optical ports. The tunable filter also includes a light dispersion element (e.g., a grating) and a reflective beam steering element (e.g., a tilting mirror). An optical signal exits an optical (input) port, is dispersed by the light dispersion element, reflects off the reflective beam steering element back to the light dispersion element, and on to another optical (output) port. The reflective beam steering element can be steered such that a wavelength portion of the dispersed optical signal can be coupled to the optical output port. For example, the input optical signal may be a wavelength division multiplexed signal carrying multiple channels on different wavelengths, and the tunable multiport optical filter directs one of the channels to the output optical port. Additionally, the tunable filter may be incorporated into a device act as a wavelength reference.
Abstract:
An optical device has the structure to perform switching and attenuation of an optical beam with reduced polarization dependent loss (PDL). The optical device includes a birefringent displacer and two liquid crystal (LC) structures. The first LC structure is used to condition s-polarized components of the optical beam and the second LC structure is used to condition p-polarized components of the optical beam. Each LC structure has a separate control electrode so that the s-polarized components of the optical beam and the p-polarized components of the optical beam can be conditioned differently and in such a manner that reduces PDL. The optical device may be configured for processing multiple input light beams, such as the multiple wavelength channels de-multiplexed from a wavelength division multiplexed (WDM) optical signal.
Abstract:
An optical device performs both switching and attenuation of an optical beam, where the beam has an arbitrary combination of s-polarized and p-polarized components. The optical device includes a birefringent displacer, a liquid crystal (LC) beam-polarizing structure having six subpixels organized in a first polarization group and a second polarization group, a half-wave plate positioned for polarization control of the second polarization group, and a polarization separating and rotating assembly. The structure of the LC beam-polarizing structure allows for 1×2 switching and attenuation control with a single control signal. The optical device may be configured for processing multiple input light beams, such as the multiple wavelength channels de-multiplexed from a wavelength division multiplexed (WDM) optical signal.
Abstract:
A multicast optical switch includes a free-space optical assembly of discrete splitters, cylindrical optics, and a linear array of reflective switching devices, such as microelectromechanical systems (MEMS) mirrors, to provide low-loss, high-performance multicast switching in a compact configuration. The assembly of optical splitters may include multiple planar lightwave circuit splitters or a multi-reflection beam splitter that includes a linear array of partially reflecting mirrors, each of a different reflectivity.
Abstract:
An optical device has the structure to perform switching and attenuation of an optical beam with reduced polarization dependent loss (PDL). The optical device includes a birefringent displacer and two liquid crystal (LC) structures. The first LC structure is used to condition s-polarized components of the optical beam and the second LC structure is used to condition p-polarized components of the optical beam. Each LC structure has a separate control electrode so that the s-polarized components of the optical beam and the p-polarized components of the optical beam can be conditioned differently and in such a manner that reduces PDL. The optical device may be configured for processing multiple input light beams, such as the multiple wavelength channels de-multiplexed from a wavelength division multiplexed (WDM) optical signal.