Abstract:
The invention relates to methods for the determination and detection of nucleic acids sequences in a sample. The nucleic acid may be RNA or DNA or both. The invention also relates to methods for the determination of the presence and species of various microorganisms in a sample. We have also identified a set of oligonucleotide nucleic acid sequences within the rRNAs of Gram-negative organisms that facilitates both the broad identification of Gram-negative organisms as a class when used as a pool, or in combination, for example in a hybridization assay. This set of oligonucleotides may detect sequences that are indicative of the presence of organisms of the broad class of Gram-negative organisms while exhibiting little or no false identification of Gram-positive organisms, and fungi, or other microorganisms. The assay includes concurrent incubation with at least one nucleotide sequence of interest, at least one nucleic acid probe, a fluorosurfactant, and a nuclease. The assay may further be employed to detect the presence of bacteria, fungi, or other microorganisms by use of additional specific probes, or to detect and/or identify target nucleic acid sequences in a sample. Further, the invention also relates to methods of reducing non-specific binding and facilitating complex formation in a binding assay. The binding assay may be, but is not limited to, a nucleic acid hybridization assay or an immunoassay. The invention also relates to methods of detection that employ at least one target of interest, which may be a nucleotide sequence, at least one probe, which may be a nucleic acid probe and a nuclease.
Abstract:
A rapid, sensitive method of separating and detecting microorganisms from a sample potentially containing microorganisms, such as but not limited to bacteria, fungi, yeast, viruses, and the like. The method relies on separation techniques to separate and concentrate the cells from the sample, together with chemical techniques to amplify the amount of detectable signal from low numbers of cells to provide a rapid and sensitive method of detecting microorganisms. This detection method may utilize: a filtration device; a centrifugation device; a system; a swab device; and kit comprising one or more of the devices and components to perform the present method of separating and detecting microorganisms in a sample potentially containing microorganisms. The sample may be a chemical, cosmetic, personal care, pharmaceutical, or consumable good in its raw material, in-process, and/or finished product states that needs to be tested for any contaminating microorganisms prior to shipment to the consumer.
Abstract:
The invention relates to the encapsulation of luminescence-related molecules, including but not limited to, adenosine triphosphate (ATP), adenylate kinase (AK), alkaline phosphatase (ALP), luminol and luciferin/luciferase cocktails, within liposomes. These liposomes can be employed to enhance the luminescence detection of microorganisms and compounds in various products and samples. The liposomes containing the luminescence-related molecules can bear a probe which has a specific sequence or structure that, in turn can be used to hybridize to, or couple with, a portion of the target analyte. Within the same assay, paramagnetic beads can bear a probe having a specific sequence or structure that, can hybridize to, or couple with, a second portion of the target analyte to create a complex of analyte bound to paramagnetic beads and liposomes. This type of assay can be often referred to as a ‘sandwich’ assay. Once the probes hybridize to, or couple with, their targets, a complex can be formed of the paramagnetic beads, the analyte, or portion thereof, and the liposomes. This complex can then be washed to remove those components that are non-hybridized or non-coupled. Then, the paramagnetic bead-analyte-liposome complexes can be isolated from the sample using magnetic separation techniques and can be treated so as to release their encapsulated ATP, AK or other luminescence-related compounds. The resulting luminescence can then be determined in a chemical assay. This determination can be qualitative (i.e., an absence/presence assay) or quantitative (i.e., which can measure a specific amount of analyte present). Through the use of a cocktail of probe types, the assay can also qualitatively or quantitatively measure the presence of more than one analyte simultaneously. This type of assay can be of commercial importance in clinical and forensic applications, the personal care, pharmaceutical, food and beverage markets, as well as in environmental sample assays.
Abstract:
A rapid, sensitive method of separating and detecting microorganisms from a sample potentially containing microorganisms, such as but not limited to bacteria, fungi, yeast, viruses, and the like. The method relies on separation techniques to separate and concentrate the cells from the sample, together with chemical techniques to amplify the amount of detectable signal from low numbers of cells to provide a rapid and sensitive method of detecting microorganisms. This detection method may utilize: a filtration device; a centrifugation device; a system; a swab device; and kit comprising one or more of the devices and components to perform the present method of separating and detecting microorganisms in a sample potentially containing microorganisms. The sample may be a chemical, cosmetic, personal care, pharmaceutical, or consumable good in its raw material, in-process, and/or finished product states that needs to be tested for any contaminating microorganisms prior to shipment to the consumer.