Abstract:
A lens for a light emitting diode is formed with a material having a refractive index of n, and the lens includes a base, a first curved circumferential surface extending from the base, a curved center-edge surface extending from the first curved circumferential surface, and a curved centermost surface extending from the curved center-edge surface. The base includes a groove for receiving a light emitting chip therein. In the lens, a distance from a center of the base to a point of the curved center-edge surface is always shorter than the radius of curvature for the point of the curved center-edge surface. The curved centermost surface has a concave shape with respect to the base. In addition, when an obtuse angle formed between a main axis of the lens and a tangent line of a point of the curved centermost surface is A1, and an acute angle formed between a straight line linking the center of the base to the point of the curved centermost surface and the main axis of the lens is A2, the lens satisfies the equation: A1+A2
Abstract:
A lens for a light emitting diode is formed with a material having a refractive index of n, and the lens includes a base, a first curved circumferential surface extending from the base, a curved center-edge surface extending from the first curved circumferential surface, and a curved centermost surface extending from the curved center-edge surface. The base includes a groove for receiving a light emitting chip therein. In the lens, a distance from a center of the base to a point of the curved center-edge surface is always shorter than the radius of curvature for the point of the curved center-edge surface. The curved centermost surface has a concave shape with respect to the base. In addition, when an obtuse angle formed between a main axis of the lens and a tangent line of a point of the curved centermost surface is A1, and an acute angle formed between a straight line linking the center of the base to the point of the curved centermost surface and the main axis of the lens is A2, the lens satisfies the equation: A1+A2
Abstract:
A lens for a light emitting diode is formed with a material having a refractive index of n, and the lens includes a base, a first curved circumferential surface extending from the base, a curved center-edge surface extending from the first curved circumferential surface, and a curved centermost surface extending from the curved center-edge surface. The base includes a groove for receiving a light emitting chip therein. In the lens, a distance from a center of the base to a point of the curved center-edge surface is always shorter than the radius of curvature for the point of the curved center-edge surface. The curved centermost surface has a concave shape with respect to the base. In addition, when an obtuse angle formed between a main axis of the lens and a tangent line of a point of the curved centermost surface is A1, and an acute angle formed between a straight line linking the center of the base to the point of the curved centermost surface and the main axis of the lens is A2, the lens satisfies the equation: A1+A2
Abstract:
A lens for a light emitting diode is formed with a material having a refractive index of n, and the lens includes a base, a first curved circumferential surface extending from the base, a curved center-edge surface extending from the first curved circumferential surface, and a curved centermost surface extending from the curved center-edge surface. The base includes a groove for receiving a light emitting chip therein. In the lens, a distance from a center of the base to a point of the curved center-edge surface is always shorter than the radius of curvature for the point of the curved center-edge surface. The curved centermost surface has a concave shape with respect to the base. In addition, when an obtuse angle formed between a main axis of the lens and a tangent line of a point of the curved centermost surface is A1, and an acute angle formed between a straight line linking the center of the base to the point of the curved centermost surface and the main axis of the lens is A2, the lens satisfies the equation: A1+A2
Abstract:
A backlight assembly and a display device having the backlight assembly are provided where the backlight assembly includes a plurality of light sources for emitting light and a plurality of metal core printed circuit boards on which the light sources are mounted. The metal core printed circuit boards are directly connected to each other in predetermined regions to emit light in a surface direction. A method of assembling the backlight assembly is further provided.
Abstract:
A backlight assembly includes a light source unit, at least one block driving unit, a controller unit and a noise removing circuit. The light source unit includes a plurality of dimming blocks generating light. The block driving unit drives the dimming blocks. The controller unit controls the block driving unit. The noise removing circuit is connected to the block driving unit and the controller unit to prevent noise from being applied to a reset terminal of the block driving unit
Abstract:
A light-generating device includes a driving substrate and a plurality of light source arrays. The driving substrate has a rectangular planar shape. The plurality of light source arrays is formed on the driving substrate. The light source arrays include at least one light emitting diode to generate light in response to power being applied through the substrate, and the light source arrays are spaced apart from each other. Thus, heat generated from the light-generating device is rapidly dissipated from the light-generating device, improving brightness of the light, brightness uniformity of the light and color reproducibility of the light.
Abstract:
A power supply is provided, which includes a DC-DC converter being supplied with an external DC input voltage and a first switching control signal and outputting a duty sensing signal of which a magnitude is varied in accordance with the first switching control signal, the duty sensing signal being indicative of a duty ratio of the first switching control signal, and the DC-DC converter converting the input voltage into a DC output voltage of a predetermined magnitude based on the first switching control signal; and a feedback controlling unit comparing the duty sensing signal with a first reference signal to adjust the duty ratio of the first switching control signal.
Abstract:
A backlight driver and liquid crystal display device including the same are disclosed. The backlight driver, in accordance with an embodiment, includes a driving-voltage-generating unit supplying a driving voltage to a light-emitting unit, or cutting off the supply of the driving voltage to the light-emitting unit, in response to a pulse width modulation signal; a pulse-width-modulation-signal-generating unit supplying the pulse width modulation signal to the driving-voltage-generating unit, and stopping its operation when an error occurs in the light-emitting unit; and an automatic reset unit supplying a reset signal to the pulse-width-modulation-signal-generating unit, when the pulse-width-modulation-signal-generating unit stops its operation, to restart the operation of the pulse-width-modulation-signal-generating unit.
Abstract:
An “LED” driving circuit comprises an “LED” driving voltage generator which generates an “LED” driving voltage, a pulse width modulation (“PWM”) control unit which outputs a “PWM” signal having a predetermined duty ratio, and a main switching unit which controls the driving voltage applied to the “LEDs” in accordance with the “PWM” signal. Further, the “PWM” control unit comprises a controller including an error amplifier which detects an error between a reference voltage and a driving voltage and amplifies the detected error, an oscillator which outputs a pulse signal having a predetermined oscillation frequency, and a comparator which compares the pulse signal output from the oscillator with an output voltage from the error amplifier to generate a “PWM” signal; and a high frequency damper connected to the main switching unit to prevent malfunction of the controller due to noise. A backlight unit and liquid crystal display incorporate the “LED” driving circuit.