Abstract:
A motherboard is provided. The motherboard includes a main body, a notch formed at a side edge of the main body, and a fixing device formed adjacent to the notch to fix an auxiliary device. The function of the motherboard is expanded significantly while artistic of the appearance of the motherboard is improved.
Abstract:
A method of registering terminals on an interdigitated chip capacitor (“IDC”) with a plurality of contact pads on a substrate. At least one vertically extending nonconductive abutment surface is formed between adjacent ones of the contact pads. A plurality of grooves projecting outwardly from said a central recess is formed on the substrate top portion. At least one sidewall portion of the IDC is urged into abutting engagement with the at least one abutment surface on the substrate. Another method prevent solder from causing short circuits between adjacent terminals. A plurality of grooves extending laterally outwardly from a central recessed portion are formed. The plurality of grooves defining a plurality of inwardly projecting fingers. A plurality of contact pads on are formed on a respective plurality of fingers. A solder bead is formed on at least some of the plurality of contact pads. The at least one solder bead is isolated from adjacent solder beads and adjacent terminals.
Abstract:
A connector for electrically connecting a first printed circuit board (PCB) with a second PCB wherein, in one example, the connector includes a housing having a keyed feature adapted to mate with a correspondingly keyed feature provided to each of the first and second PCBs and at least one connecting terminal carried by the housing having at least partially exposed opposed ends each of which electrically engages a contact pad formed on an underside of the respective PCBs. The connecting terminal may be arranged to accept a conductor and to thereby electrically couple the conductor to the first and second PCBs.
Abstract:
A method and system for connecting a vertical printed circuit board with a horizontal printed circuit board where a contact device is biased in a first position when not contacting a vertical printed circuit board and is biased in a second position when the vertical printed circuit is coupled to the horizontal printed circuit board.
Abstract:
Described herein are antenna designs and configurations that provide flexible solutions for creating compact antennas with multiple-band capabilities. For example, a hybrid PIFA-monopole antenna configuration and design is described. As another example, non-planar (e.g., orthogonal) and composite radiating structures incorporating various radiating element and ground plane configurations are described. Connective structures are also described for providing physical rigidity and ground plane connectivity to composite radiation elements. In embodiments described herein of composite radiating structures, multiple antennas may be included through passive radiating elements potentially combined with active circuitry. Composite radiating structures with multiple antennas may be used in multiple-in and multiple-out (MIMO) antenna applications. For example, multiple different antennas within the composite radiating structures may be created using radiating elements on one or more of the vertical and/or horizontal portions of the composite radiating structure.
Abstract:
An interconnect device is disclosed including a support in which at least one hole is formed, the hole having walls forming a closed contour and being formed by a cavity and one or several slots communicating with the cavity. The slots extend in a direction making a non-zero angle with the main plane of the support. Several conducting elements are positioned on at least one wall of the hole and pass through the hole. The conducting elements are each intended to connect conducting areas to each other that are situated on either side of the support. At least one of the slots separates two of the conducting elements from each other.
Abstract:
An embodiment is a memory card including a rectangular printed circuit card having a first side and a second side, a first length of between 151.35 and 161.5 millimeters, and first and second ends having a second length smaller than the first length. The memory card also includes a first plurality of pins on the first side extending along a first edge of the rectangular printed circuit card that extends along a length of the rectangular printed circuit card, a second plurality of pins on the second side extending on the first edge of the rectangular printed circuit card, and a positioning key having its center positioned on the first edge of the rectangular printed circuit card and located between 94.0 and 95.5 millimeters from the first end of the rectangular printed circuit card.
Abstract:
The present disclosure discloses a bonding structure, wherein a plurality of first bonding pads is located on a first substrate. A second substrate is disposed to partially face first substrate. A plurality of second bonding pads is located on second substrate with one side, and partially overlapped with the first bonding pads with the other side to form a bonding region and a peripheral region located in the periphery of the bonding region. An anisotropic conductive film is disposed between first bonding pads and second bonding pads. The anisotropic conductive film includes a plurality of conductive particles. At least one move structure is disposed in the periphery region. When the conductive particles of the anisotropic conductive film are moving during the bonding process, the groove structure can accommodate the conductive particles moved hereto. Accordingly, short circuit caused by accumulation of the conductive particles in the bonding process can be avoided.
Abstract:
Provided is a highly accurately alignable substrate set, the cost of which is kept low. In the substrate set, a light source FPC substrate (11) has a notch (16), and an anode pad (13) and a cathode pad (14) that are disposed so as to sandwich the notch (16) therebetween, and a panel FPC substrate (21) has a plus terminal (23) and a minus terminal (24) that are disposed so as to be in contact with the anode pad (13) and the cathode pad (14), and an opening (26) that is sandwiched between the plus terminal (23) and the minus terminal (24).
Abstract:
The probe with printed tip consists of a substrate having a plurality of probe tips connected to its end edge, a plurality of test paths, each connected to one of the probe tips and extending along the substrate, and at least one of the test paths including an electrical component adjacent to the test path's probe tip. The electrical component may be a resistor. The probe tips may have a width equal to the thickness of the substrate. The probe tips may consist of a plurality of probe tip layers. The invention also includes a method of probing signals transmitted over target transmission lines on a target board. The disclosure also includes a method of manufacturing the claimed invention.