Abstract:
Embodiments of a packet-data network (PDN) and methods for RAN-agnostic multimedia content distribution are generally described herein. In some embodiments, the PDN may dynamically distribute IP packets of a single service flow to two or more RANs associated with two or more available radio links for subsequent transmission to a user terminal when each of the two or more available radio links meet the QoS requirements of the single service flow.
Abstract:
Techniques for managing detection, dynamic allocation, and sharing of available spectrum via cognitive radio systems and dynamic spectrum sharing. In some cases, RF carriers (e.g., secondary carriers or secondary cells) are not permanently assigned to base stations, user terminals, or the network. A base station can request allocation of secondary carriers using a reservation request. The assigned secondary carriers can be released and made available for assignment to another base station or radio access network.
Abstract:
In a wireless network, simultaneous support of distributed and contiguous sub-carrier allocation may be accomplished in the same sub-frame or time zone. Techniques are described herein that can be used to allocate distributed and/or contiguous basic (physical) resource blocks to users by specifying a codebook index and parent node. Techniques are described herein that can be used to flexibly set a number of sub-channels over which a subscriber station indicates a channel quality indicator to a base station. Sub-channels may be represented as nodes and may be grouped to include a parent node and child nodes. By specifying a code book to use and a parent node, the channel quality indicator of the parent and children nodes can be indicated.
Abstract:
A coordinated multipoint (CoMP) transmission radio network is provided. Each cell in the CoMP network may include antenna nodes distributed at different geographical locations and coupled to a common baseband processing unit via an optical fiber link. When operating a user device in the CoMP network, the device may register with a neighboring baseband unit and may be served using at least one antenna node. The device may continuously receive reference signals from different antenna nodes in its vicinity and compute receive signal strength levels. The device may report the measurements to the corresponding baseband unit. The baseband unit may then switch appropriate antennas in/out of use based on the measured results. If desired, the device may be served using more than one antenna node that may or may not be part of the same cell (e.g., the device may be served using antenna nodes coupled to different baseband units).
Abstract:
Embodiments of a method and apparatus for discovery and association, by a mobile station, of a femto base station from a plurality of base stations. The mobile station may select a base station for consideration for association by decoding a physical layer identifier to determine that the base station is a macro base station and select a different base station based on other considerations. Other embodiments may be described and claimed.
Abstract:
The particular frame in a super-frame using orthogonal frequency division multiple access techniques will contain system configuration information in the super-frame header. This super-frame header may be located at a fixed offset from the initial preamble of the frame. In some embodiments, the system configuration information may be located in a broadcast channel section of the super-frame header. In some embodiments, the particular frame may overlap a legacy OFDMA frame in time and in OFDMA sub-channels, so that the two frames share some time and sub-channel resources.
Abstract:
Embodiments of a wireless communication system and methods allocating bandwidth are generally described herein. Other embodiments may be described and claimed. In some embodiments, an estimated requested bandwidth is included in a contention code. Additionally, a mobile station may reuse a previously used contention code that resulted in successful access to a base station. Further, a base station may determine or predict contention patterns and allocate codes based on the patterns.
Abstract:
A method and system for partitioning frames into sub-frames, where the frames may be defined according to a reference system standard, and transmitting one or more sub-frames during a pre-designated downlink transmission, and transmitting one or more sub-frames during a pre-designated uplink transmission. A method and system for partitioning frames into sub-frames, transmitting one or more sub-frames including a legacy preamble for communicating with a legacy terminal operating according to a reference system standard during a pre-designated legacy transmission period, and transmitting sub-frames including a supplemental preamble for communicating with a non-legacy terminal operating according to the evolved version of the reference system standard during a pre-designated non-legacy transmission period. A method and system for partitioning each of two or more frames into two or more sub-frames and transmitting the sub-frames for a non-relay transmission including transmitting a (DL:BS→MS/RS) sub-frame during a pre-designated downlink transmission and a (UL:MS/RS→BS) sub-frame during a pre-designated uplink transmission, and transmitting sub-frames for a relay transmission including transmitting a (DL:RS→MS) sub-frame during a pre-designated downlink transmission and a (UL:MS→RS) sub-frame during a pre-designated uplink transmission.
Abstract:
Embodiments of the present invention provide a virtual multicarrier design for orthogonal frequency division multiple access communications. Other embodiments may be described and claimed.
Abstract:
An embodiment of the present invention provides an apparatus, comprising a transceiver adapted to operate according to an Institute for Electronic and Electrical Engineers (IEEE) STD 802.16e-2005 or IEEE 802.16m standard and further adapted to use logical and transport/physical channelization. Furthermore, a virtual wideband RF channel concept (support of contiguous and non-contiguous RF bands in OFDMA and non-OFDMA wireless systems through aggregation of smaller RF bands) is also described herein, from which all wireless communication systems and standards can benefit.