Abstract:
Disclosed is a developing solution for a photosensitive polyimide, which consists of an aqueous solution of an amine compound having a base dissociation index pKb [=−log (Kb)=−log (Kw/Ka)=14−pKa, where Kb is a base dissociation constant, Ka is acid dissociation constant of a proton complex, pKa is an acid dissociation index of a proton complex=−log (Ka), and Kw is an ion product of water=1×10−14] of 5 to 8 within an aqueous solution of 25° C.
Abstract:
An optical disc having a transparent substrate, a resin layer comprised of a silicon resin and a curing catalyst, a projection/recess pattern formed on the transparent substrate, and a recording layer formed on the resin layer.
Abstract:
The present invention provides a highly efficient light-extraction layer and an organic electroluminescence element excellent in light-extraction efficiency. The light-extraction layer of the present invention comprises a reflecting layer and a three-dimensional diffraction layer formed thereon. The diffraction layer comprises fine particles having a variation coefficient of the particle diameter of 10% or less and of a matrix having a refractive index different from that of the fine particles. The particles have a volume fraction of 50% or more based on the volume of the diffraction layer. The particles are arranged to form first areas having short-distance periodicity, and the first areas are disposed and adjacent to each other in random directions to form second areas. The organic electroluminescence element of the present invention comprises the above light-extraction layer.
Abstract:
According to one aspect of the invention, a contact sheet for testing electronic parts, comprising an insulating porous layer; and a connection electrode which is disposed on the insulating porous layer and electrically connect the electrode or terminal of the electronic parts and the terminal of a test apparatus; wherein the connection electrode is embedded below at least one main surface of the insulating porous layer.
Abstract:
The present invention provides a composite material such as a passive element, a passive element composite component, a substrate with a built-in passive element and a composite wiring substrate which are free from, for example, a layer peeling problem and enables high density packaging with ease. In the present invention, a porous base material is divided into plural functional regions and a material having different electromagnetic characteristics is filled in a pore of the porous base material of each functional region, to form a passive element or a wiring substrate. Among the aforementioned plural functional regions, at least one functional region is a conductive material region filled with a conductive material and other regions are filled with a high-dielectric material, a high-permeability material or a low-dielectric material. This structure ensures that a single passive element, plural passive elements or a wiring substrate provided with a circuit wiring can be formed on a porous base material efficiently.
Abstract:
An electrochromic display device includes a transparent first electrode and a second electrode opposing said first electrode to be spaced apart therefrom. An electrochromic layer is formed in a space formed between the first and second electrodes so as to be in contact with the first electrode. The electrochromic layer is formed of certain naphthalene derivatives, certain tetracene derivatives or certain fulvalene derivatives. An ionic conductor layer is formed in the space so as to be in contact with the electrochromic layer.
Abstract:
Disclosed is a solid state lithium cell comprising layers of a cathode-active material, a solid electrolyte, and an anode-active material consisting of lithium metal, which are arranged in this order, which is characterized in that said cathode-active material is a solid solution composed of lead iodide and at least one element selected from the group consisting of bismuth, antimony, thallium, indium and gallium and iodides thereof.
Abstract:
A catalyst layer containing a catalyst material, the catalyst layer having a porosity of 20 to 90% by vol and satisfying a relation: R1≧R0×1.2, wherein R1 is an alignment ratio of the catalyst layer; and R0 is an alignment ratio of the catalyst material in powder form having a random crystalline plane distribution, and each of the alignment ratios is calculated from a X-ray diffraction spectrum having a diffraction angle 2θ range from 10 to 90 degree measured using Cu-Kα-rays.
Abstract:
The present invention provides a highly efficient light-extraction layer and an organic electroluminescence element excellent in light-extraction efficiency. The light-extraction layer of the present invention comprises a reflecting layer and a three-dimensional diffraction layer formed thereon. The diffraction layer comprises fine particles having a variation coefficient of the particle diameter of 10% or less and of a matrix having a refractive index different from that of the fine particles. The particles have a volume fraction of 50% or more based on the volume of the diffraction layer. The particles are arranged to form first areas having short-distance periodicity, and the first areas are disposed and adjacent to each other in random directions to form second areas. The organic electroluminescence element of the present invention comprises the above light-extraction layer.
Abstract:
An electronic device connecting method according to a first aspect of the present invention includes: mounting an electronic device having at least one electrode portion on a sheet-like porous member having a hole therein so that the electrode portion is close to the porous member; selectively irradiating a predetermined region of the porous member, on which the electronic device is mounted, with energy lines to form a latent image in an irradiated or non-irradiated portion of the porous member, the predetermined region including a portion close to the electrode portion; after irradiating with the energy lines, filling a conductive material in a hole of the latent image of the porous member to form a conductive portion; and bonding and integrating the porous member, in which the conductive portion is formed, to and with the electronic device.