Abstract:
A local dimming driving method of the LCD device includes divisionally driving all of a plurality of blocks of a backlight unit using a maximum luminance signal and measuring luminance per block, setting one of the plurality of blocks as a reference block, detecting luminance deviations between the reference block and the residual blocks, and setting an offset value per block for compensating for the detected luminance deviations per block, analyzing an input image in units of blocks corresponding to the plurality of blocks of a backlight unit respectively, detecting a representative value per block, and determining a dimming value per block according to the representative value per block, correcting the dimming value per block using the offset value per block, and controlling the luminance of the backlight unit on a block-by-block basis using the corrected dimming value per block.
Abstract:
Disclosed is a chip-on-film (COF) type semiconductor package and a device using the same. The COF type semiconductor package may include an insulation substrate including a top surface and bottom surface, a semiconductor device on the top surface of the insulation substrate, a heat dissipating component on the bottom surface of the insulation substrate, and at least one space between the bottom surface of the insulation substrate and a top surface of the heat dissipating component.
Abstract:
A driving method for local dimming of a Liquid Crystal Display (LCD) device and an apparatus using the same are disclosed. The driving method includes determining a dimming value of each of a plurality of local dimming blocks into which a backlight unit is divided to be driven on a block basis by analyzing input image data on a block basis, detecting a high gray area concentrated with high gray levels from each local dimming block based on the analysis of the input image data, and generating position information about the high gray area according to a distance between the high gray area in the block and an adjacent block, and compensating the dimming value of each of the plurality of local dimming blocks by spatial filtering using a spatial filter having a different filter size or different filter coefficients for local dimming blocks according to the position information about the high gray area in the local dimming block.
Abstract:
A tape circuit substrate includes a base film with first wiring and second wiring disposed on the base film. The first wiring extends into a chip mount portion through a first side and bends within the chip mount portion toward a second side. The second wiring extends into the chip mount portion through a third side and bends within the chip mount portion toward the second side. The first, second, and third sides are different sides of the chip mount portion. Thus, size and in turn cost of the base film are minimized by arranging wirings within the chip mount portion for further miniaturization of electronic devices, such as a display panel assembly, using the tape circuit substrate.
Abstract:
Semiconductor package films and a display module comprising a packaged semiconductor device punched from a semiconductor package film are provided. In one embodiment, the invention provides a semiconductor package film comprising a base film comprising a plurality of semiconductor device regions, an intermediate region disposed on a first surface of the base film and disposed between two semiconductor device regions, and a reinforcing member attached to a second surface of the base film opposite the first surface of the base film and attached opposite the intermediate region. Each semiconductor device region comprises a semiconductor mounting region adapted to receive a semiconductor chip, and first and second metal line regions.
Abstract:
Output pads on an integrated circuit (IC) chip are arranged along a first longer side and are arranged along a second longer side with input pads. The output pads are connected to respective output patterns formed on top and bottom surfaces of a base film. All the output patterns may pass over the first longer side. Alternatively, the output patterns connected to the output pads at the second longer side may pass over a shorter side. These pattern structures establish an effective pad arrangement without increasing the size of a TAB package, yet allowing reduced the chip size.
Abstract:
A chip-on-film package may include a tape wiring substrate, a semiconductor chip mounted on the tape wiring substrate, and a molding compound provided between the semiconductor chip and the tape wiring substrate. The tape wiring substrate may include a film having upper and lower surfaces. Vias may penetrate the film. An upper metal layer may be provided on the upper surface of the film and include input terminal patterns and/or output terminal patterns. The input terminal patterns may include ground terminal patterns and/or power terminal patterns. A lower metal layer may be provided on the lower surface of the film and include a ground layer and/or a power layer. The ground layer and the power layer may cover at least a chip mounting area.
Abstract:
Semiconductor package films and a display module comprising a packaged semiconductor device punched from a semiconductor package film are provided. In one embodiment, the invention provides a semiconductor package film comprising a base film comprising a plurality of semiconductor device regions, an intermediate region disposed on a first surface of the base film and disposed between two semiconductor device regions, and a reinforcing member attached to a second surface of the base film opposite the first surface of the base film and attached opposite the intermediate region. Each semiconductor device region comprises a semiconductor mounting region adapted to receive a semiconductor chip, and first and second metal line regions.
Abstract:
A semiconductor package includes a semiconductor chip, a circuit board at which a wire pattern is formed, and a metal structure including a portion inserted through an opening of the circuit board and upon which the semiconductor chip rests. With the semiconductor chip in direct contact with the metal structure, thermal characteristics improve. With the circuit board supported by the metal structure, mechanical stability improves.
Abstract:
Disclosed is a method for analyzing a light profile of a light source includes driving a light source of one of a plurality of blocks which divide a backlight unit, setting a light analyzing region matched to one light emission region of the light source, dividing the light analyzing region into at least two symmetric regions considering a form of the light emission region and symmetry of the light emission region, and analyzing and storing a light profile of one of the at least two symmetric regions.