Abstract:
The present invention relates to an additive and method to simultaneously reduce both the carbon in ash and the NOx production levels resulting from the combustion of coal by the use of at least one manganese-containing additive. Use of a manganese-containing additive in a coal burning utility furnace results in both a lower carbon in ash content and lower NOx emissions.
Abstract:
An additive and a method for reducing carbon and fly ash results from the combustion of a mixture of coal and a manganese-containing compound. The manganese compound may be mixed with coal either before or in a combustion chamber. The manganese compound may be an inorganic or organometallic compound. The organometallic compound may include methylcyclopentadienyl manganese tricarbonyl.
Abstract:
A hydrocarbonaceous fuel additive, fuel composition, and method all lower both carbon particulate emissions and improve slag properties in combustion systems including, for instance, utility furnaces and boiler systems. The mixed metal catalyst may include a transition metal-containing compound, an alkali metal compound, and a magnesium-containing compound.
Abstract:
Manganese is added to a combustion fuel, combustion air, or the resulting combustion exhaust gas in order to improve the efficiency of an electrostatic precipitator in collecting the resulting fly ash. Further, manganese or other flame suppressant is added to a fuel, and/or combustion air, or combustion exhaust gas stream in order to reduce back-corona discharge that could otherwise occur in an electrostatic precipitator.
Abstract:
A hydrocarbonaceous fuel additive, fuel composition, and method all lower both carbon particulate emissions and improve slag properties in combustion systems including, for instance, utility furnaces and boiler systems. The mixed metal catalyst may include a transition metal-containing compound, an alkali metal compound, and a magnesium-containing compound.