Abstract:
An electromechanical device includes a stack formed of an insulating layer interposed between two solid layers, and a micromechanical structure of predetermined thickness suspended above a recess of predetermined depth, the recess and the micromechanical structure forming one of the two solid layers of the stack, and the insulating layer forming the bottom of the recess.
Abstract:
The invention relates to a micro-electromechanical device used as a force sensor, comprising a mobile mass connected to at least one securing zone by means of springs or deformable elements, and means for detecting the movement of the mobile mass, the mobile mass having an outer frame and an inner body, the outer frame and the inner body being connected by at least two flexible portions forming integral decoupling springs on two separate sides of the outer frame.
Abstract:
An electromechanical device includes a stack formed of an insulating layer interposed between two solid layers, and a micromechanical structure of predetermined thickness suspended above a recess of predetermined depth, the recess and the micromechanical structure forming one of the two solid layers of the stack, and the insulating layer forming the bottom of the recess.
Abstract:
An electromechanical device includes a stack consisting of an insulating layer inserted between two solid layers. The device also includes a micromechanical structure suspended above a recess and a nanometric structure suspended above the recess. The relevant position of the nanometric structure relative to the micrometric structure is defined by the delimitation of the contours of the two structures by etching a first surface of a substrate consisting of a solid layer so as to obtain trenches that define the structures.
Abstract:
A mechanical oscillator endowed with a strip, with the aforesaid strip incorporating a first silicon layer having a crystal lattice extending along a first direction of one plane, a thermal compensation layer composed of a material having a Young's modulus thermal coefficient of opposite sign to that of the silicon, and a second silicon layer having a crystal lattice extending in a second direction of the plane, with the first and direction being offset at an angle of 45° within the plane of the layers, and with the thermal compensation layer extending between the first and second silicon layers.
Abstract:
The invention relates to a micro-electromechanical device used as a force sensor, comprising a mobile mass connected to at least one securing zone by means of springs or deformable elements, and means for detecting the movement of the mobile mass, the mobile mass having an outer frame and an inner body, the outer frame and the inner body being connected by at least two flexible portions forming integral decoupling springs on two separate sides of the outer frame.