Abstract:
A conductive film of thickness of from 3 nm to 50 nm made from a metal or ally formed on a substrate, wherein the ratio of density thereof to bulk density of the metal or alloy is from 0.2 to 0.5, and the ratio of resistivity thereof to bulk resistivity of the metal or alloy is from 100 to 100000.
Abstract:
A conductive film of thickness of from 3 nm to 50 nm made from a metal or ally formed on a substrate, wherein the ratio of density thereof to bulk density of the metal or alloy is from 0.2 to 0.5, and the ratio of resistivity thereof to bulk resistivity of the metal or alloy is from 100 to 100000.
Abstract:
A method for producing a film pattern comprises a step of forming a resin film on a substrate surface; a step of incorporating into the resin film a constituent of a conductive film or a semiconductor film; a step of irradiating the resin film with an ultraviolet light; and a step of heating the resin film at a temperature not lower than a decomposition temperature of the resin to form a conductive film or a semiconductor film on the substrate, whereby the resin does not easily generate decomposition residues to improve precision and quality of the produced film pattern.
Abstract:
A method for producing a film pattern comprises a step of forming a resin film on a substrate surface; a step of incorporating into the resin film a constituent of a conductive film or a semiconductor film; a step of irradiating the resin film with an ultraviolet light; and a step of heating the resin film at a temperature not lower than a decomposition temperature of the resin to form a conductive film or a semiconductor film on the substrate, whereby the resin does not easily generate decomposition residues to improve precision and quality of the produced film pattern.