Abstract:
A substrate is provided with an abrasion resistance antireflection coating. The coated substrate includes a multilayer antireflection coating on at least one side. The coating has layers with different refractive indices, wherein higher refractive index layers alternate with lower refractive index layers. The layers having a lower refractive index are formed of silicon oxide with a proportion of aluminum, with a ratio of the amounts of aluminum to silicon is greater than 0.05, preferably greater than 0.08, but with the amount of silicon predominant relative to the amount of aluminum. The layers having a higher refractive index include a silicide, an oxide, or a nitride.
Abstract:
A product having a glass or glass-ceramic substrate is provided. The substrate is exposable to temperatures in a range of up to 700° C. and has, at least on one surface, a self-cleaning and/or dirt-repellent layer for improving cleanability. The layer is high-temperature resistant, as well as resistant to mechanical stresses. The layer includes at least one of the metal oxides of elements Hf, Y, Zr, or Ce in an at least partially nanocrystalline structure as a basic material, and at least one further metal cation of any of elements Ca, Ce, Y, K, Li, Mg, Sr, and Gd.
Abstract:
Glass-ceramic is provided that is at least partly provided with a hard material layer to protect against external mechanical influences. The hard material layer contains at least two phases, which are present side by side and are mixed with one another. The at least two phases include at least one nanocrystalline phase and one amorphous phase. The hard material layer has a hardness of at least 26 GPa and a layer thickness of at least 0.5 μm. The hard material layer is chemically resistant in the temperature range from 200° C. to 1000° C. The coefficient of thermal expansion (α) of the glass-ceramic does not differ by more than +/−20% from the coefficient of thermal expansion (α) of the hard material layer.
Abstract:
A substrate is provided with an abrasion resistance antireflection coating. The coated substrate includes a multilayer antireflection coating on at least one side. The coating has layers with different refractive indices, wherein higher refractive index layers alternate with lower refractive index layers. The layers having a lower refractive index are formed of silicon oxide with a proportion of aluminum, with a ratio of the amounts of aluminum to silicon is greater than 0.05, preferably greater than 0.08, but with the amount of silicon predominant relative to the amount of aluminum. The layers having a higher refractive index include a silicide, an oxide, or a nitride.