Abstract:
A device and method of heat sinking a surface mount device (SMD) component. In an example method through holes are formed in a printed circuit board (PCB), a first copper layer is electroless plated in the holes, a second copper layer is standard plated in the holes and surrounding surfaces of the PCB, a third copper layer is masked and pulse plated in the holes, the holes are filled with non-conductive material and then is sanded flush with the second copper layer. A fourth copper layer electroless plated on the PCB over the area of the holes, a fifth copper layer (or pad) plated on the PCB over the area of the holes, and a surface mount device is attached to the fifth copper layer.
Abstract:
A device and method of heat sinking a surface mount device (SMD) component. In an example method through holes are formed in a printed circuit board (PCB), a first copper layer is electroless plated in the holes, a second copper layer is standard plated in the holes and surrounding surfaces of the PCB, a third copper layer is masked and pulse plated in the holes, the holes are filled with non-conductive material and then is sanded flush with the second copper layer. A fourth copper layer electroless plated on the PCB over the area of the holes, a fifth copper layer (or pad) plated on the PCB over the area of the holes, and a surface mount device is attached to the fifth copper layer.
Abstract:
The invention provides apparatus and methods for a removable and transportable mass data storage system assimilating multiple levels of abstraction, automation and hot-swappable, fault-tolerant modularization. In providing such a system, a means for or method of reducing or bypassing the amount of time needed for information exchange before such system can be removed and transported is provided. The means or method enables the information to be quickly physically transported from a hardware platform in which it was acquired to a hardware venue in which it could be examined, offloaded, stored, safeguarded, or the like. The means or method would enable rapid insertion of blank media for an immediate continuance of any originating process. The means or method would facilitate rapid exchanges of databases, expert systems, multimedia content, reconnoitered information, and the like.
Abstract:
The invention provides an apparatus comprised of a heater system used for a mass data storage module. The system is configured to maintain the correct operating temperature for drives of the module when the ambient temperature and/or initial, starting temperature is outside of the range of temperatures required for reliable operation of the drives and as appropriate, to report issues to a user via in-band (i.e., the host system data path) and out-of-band (supplemental user communication links) interfaces. Pulse width modulation is used in distributing heat across the drives with the implementation of a rotating “seed” methodology, rather than a variable duty cycle.
Abstract:
A device and method of heat sinking a surface mount device (SMD) component. In an example method through holes are formed in a printed circuit board (PCB), a first copper layer is electroless plated in the holes, a second copper layer is standard plated in the holes and surrounding surfaces of the PCB, a third copper layer is masked and pulse plated in the holes, the holes are filled with non-conductive material and then is sanded flush with the second copper layer. A fourth copper layer electroless plated on the PCB over the area of the holes, a fifth copper layer (or pad) plated on the PCB over the area of the holes, and a surface mount device is attached to the fifth copper layer.
Abstract:
A method of heat sinking a surface mount device (SMD) component. In an example method through holes are formed in a printed circuit board (PCB), a first copper layer is electroless plated in the holes, a second copper layer is standard plated in the holes and surrounding surfaces of the PCB, a third copper layer is masked and pulse plated in the holes, the holes are filled with non-conductive material and then is sanded flush with the second copper layer. A fourth copper layer electroless plated on the PCB over the area of the holes, a fifth copper layer (or pad) plated on the PCB over the area of the holes, and a surface mount device is attached to the fifth copper layer.