Abstract:
A system and method for optimizing performance of an artificial lift system are provided. The optimization process can be performed automatically by a controller configured to receive optimization parameters from the user and information regarding the performance of the system. The optimization process adjusts the pumping speed of the system in response to measured rod load and a position of the downhole pump or surface pumping unit. More particularly, the optimization process can increase or decrease the pump speed of the system in response to the measured rod load at a reference position relative to a reference rod load at the reference position. The reference load and position can be selected to indicate pump inefficiencies. For example, the target reference load and position can indicate fluid pounding if the measured rod load at the reference position is greater than the reference rod load at the reference position.
Abstract:
A power management circuit for a multi-phase alternating current (AC) power supply is provided to manage a single phase bad, connected thereto, during a brownout condition. The management circuit is configured to switch the single phase electrical bad from an affected conductor of the AC power supply and to connect the single phase electrical bad between two unaffected conductors of the AC power supply thereby ensuring continued supply of voltage to the single phase electrical load.
Abstract:
A well pad having a plurality of wells is described. The well pad has two parallel rows or linear arrays of well pairs, mirrored to each other in both a W-E direction and a S-N direction orthogonal to the W-E direction. Each row of well pairs comprises an inner row of injection wells and an outer row of production wells. A plurality of wellhead connection modules and a piping module are deployed between the two rows of well pairs. Each wellhead connection module is connected to one, two three or four well pairs. The piping module connects the wellhead connection modules to a central processing facility.
Abstract:
An artificial lifting system is disclosed. The artificial lifting system comprises an elongated cylinder fixed to a base or ground. The elongated cylinder receives a piston rod axially movable therein. The piston rod engages a downhole rod pump for driving the rod pump reciprocating uphole and downhole to pump downhole fluid to the surface. A control unit controls the axial movement of the piston rod, and automatically adjust the system operation to adapt to drift of the top and bottom stop positions of the piston rod. In an alternative embodiment, the system further comprises a dump valve controlled by the control unit to prevent over-stroke. In another embodiment, the system further comprises a chemical injection unit for injecting treatment fluid to a wellbore under the control of the control unit.
Abstract:
A system and method for optimizing performance of an artificial lift system are provided. The optimization process can be performed automatically by a controller configured to receive optimization parameters from the user and information regarding the performance of the system. The optimization process adjusts the pumping speed of the system in response to measured rod load and a position of the downhole pump or surface pumping unit. More particularly, the optimization process can increase or decrease the pump speed of the system in response to the measured rod load at a reference position relative to a reference rod load at the reference position. The reference load and position can be selected to indicate pump inefficiencies. For example, the target reference load and position can indicate fluid pounding if the measured rod load at the reference position is greater than the reference rod load at the reference position.
Abstract:
A well pad having a plurality of wells is described. The well pad has two parallel rows or linear arrays of well pairs, mirrored to each other in both a W-E direction and a S-N direction orthogonal to the W-E direction. Each row of well pairs comprises an inner row of injection wells and an outer row of production wells. A plurality of wellhead connection modules and a piping module are deployed between the two rows of well pairs. Each wellhead connection module is connected to one, two three or four well pairs. The piping module connects the wellhead connection modules to a central processing facility.
Abstract:
An artificial lifting system is disclosed. The artificial lifting system comprises an elongated cylinder fixed to a base or ground. The elongated cylinder receives a piston rod axially movable therein. The piston rod engages a downhole rod pump for driving the rod pump reciprocating uphole and downhole to pump downhole fluid to the surface. A control unit controls the axial movement of the piston rod, and automatically adjust the system operation to adapt to drift of the top and bottom stop positions of the piston rod. In an alternative embodiment, the system further comprises a dump valve controlled by the control unit to prevent over-stroke. In another embodiment, the system further comprises a chemical injection unit for injecting treatment fluid to a wellbore under the control of the control unit.
Abstract:
A power management circuit for a multi-phase alternating current (AC) power supply is provided to manage a single phase bad, connected thereto, during a brownout condition. The management circuit is configured to switch the single phase electrical bad from an affected conductor of the AC power supply and to connect the single phase electrical bad between two unaffected conductors of the AC power supply thereby ensuring continued supply of voltage to the single phase electrical load.