Abstract:
Collecting state information about the resources of radio access networks (RANs) and the Access Point Names (APNs) enables this information to be provided to mobile stations which employ this information to determine which radio access technology (RAT) to employ for connecting to the wireless access network, and to determine which APN to use. This decision is made relative to each application that the mobile station is executing, and these decisions are, optionally, revisited periodically, or as significant changes in the state information are recognized.
Abstract:
Collecting state information about the resources of radio access networks (RANs) and the Access Point Names (APNs) enables this information to be provided to mobile stations which employ this information to determine which radio access technology (RAT) to employ for connecting to the wireless access network, and to determine which APN to use. This decision is made relative to each application that the mobile station is executing, and these decisions are, optionally, revisited periodically, or as significant changes in the state information are recognized.
Abstract:
Collecting state information about the resources of radio access networks (RANs) and the Access Point Names (APNs) enables this information to be provided to mobile stations which employ this information to determine which radio access technology (RAT) to employ for connecting to the wireless access network, and to determine which APN to use. This decision is made relative to each application that the mobile station is executing, and these decisions are, optionally, revisited periodically, or as significant changes in the state information are recognized.
Abstract:
Collecting state information about the resources of radio access networks (RANs) and the Access Point Names (APNs) enables this information to be provided to mobile stations which employ this information to determine which radio access technology (RAT) to employ for connecting to the wireless access network, and to determine which APN to use. This decision is made relative to each application that the mobile station is executing, and these decisions are, optionally, revisited periodically, or as significant changes in the state information are recognized.
Abstract:
A system for optimizing communications on a radio network by altering transitions between different link states that includes several modules. The activity, environment, and load module monitor monitors the link layer based on spectral-load metrics and radio-link metrics. The state transition control module determines when user equipment transitions between different states based on the type of user equipment, user equipment battery life, whether the user equipment is connected to an alternating current outlet, a spectral cost, and a backhaul cost. The channel state influencer module uses any of direct messages, ping messages, and keep-alive messages to influence the link state. The policy and preference handler enables or disables transitions based on the bearer technology type, the type of user equipment, the user's subscription plan, and the load level on the network.
Abstract:
Collecting state information about the resources of radio access networks (RANs) and the Access Point Names (APNs) enables this information to be provided to mobile stations which employ this information to determine which radio access technology (RAT) to employ for connecting to the wireless access network, and to determine which APN to use. This decision is made relative to each application that the mobile station is executing, and these decisions are, optionally, revisited periodically, or as significant changes in the state information are recognized.
Abstract:
A bandwidth estimation algorithm on shared links detects peaks and/or average per-user bandwidth. Estimating is performed at the transport or IP layer with no assistance from lower layer (PHY, MAC, etc.) and the techniques can be used for any of adjusting the level of video optimization to the available bandwidth; driving QoS decisions at the transmitter based on available bandwidth; improving QoS enforcement during transitions among hybrid technologies on a wireless links; and correcting estimates on devices delivering bursty payload.
Abstract:
A system for optimizing communications on a radio network by altering transitions between different link states that includes several modules. The activity, environment, and load module monitor monitors the link layer based on spectral-load metrics and radio-link metrics. The state transition control module determines when user equipment transitions between different states based on the type of user equipment, user equipment battery life, whether the user equipment is connected to an alternating current outlet, a spectral cost, and a backhaul cost. The channel state influencer module uses any of direct messages, ping messages, and keep-alive messages to influence the link state. The policy and preference handler enables or disables transitions based on the bearer technology type, the type of user equipment, the user's subscription plan, and the load level on the network.