Abstract:
A production method of synthetic silica glass according to the present invention comprises a first step of ejecting a silicon compound and a combustion gas containing oxygen and hydrogen from a burner to effect hydrolysis of the silicon compound in oxyhydrogen flame to produce fine particles of silica glass, and thereafter depositing and vitrifying the fine particles of silica glass on a target opposed to the burner to obtain a synthetic silica glass ingot; a second step of heating the synthetic silica glass ingot or the like obtained in the first step up to a first retention temperature of not less than 900° C., retaining the ingot or the like at the first retention temperature, and cooling the ingot or the like at a temperature decrease rate of not more than 10° C./h down to a temperature of not more than 500° C.; and a third step of heating the synthetic silica glass ingot or the like obtained in the second step up to a second retention temperature of not less than 500° C. nor more than 1100° C., retaining the ingot or the like thereat, and thereafter cooling the ingot or the like at a temperature decrease rate of not less than 50° C./h down to a temperature 100° C. lower than the second retention temperature.
Abstract:
In an integrated management system for providing a network system having a plurality of computers with a security function and managing a plurality of target products, implementation of the management system itself is facilitated by providing the management system with setting information templates prepared for respective target products, a management program for managing setting information files of target products actually used in a target network, an edit program for editing setting information files, and an install program for installing setting information files created by using the management program and the edit program in respective target devices.