Abstract:
A printed circuit board is disclosed. The printed circuit board, which may include an insulation layer, a first metal pad formed on the insulation layer, a second metal pad electrically coupled with the first metal pad and having an ionization tendency lower than that of the first metal pad, and a sacrificial electrode electrically coupled with the second metal pad to prevent corrosion in the first metal pad, can be utilized to prevent excessive etching that may otherwise occur due to galvanic corrosion between metal pads of different ionization tendencies.
Abstract:
Disclosed are a printed circuit board for a semiconductor package and a method of manufacturing the same. Specifically, a printed circuit board for a semiconductor package includes predetermined circuit patterns, having a wire bonding portion and a bump portion for mounting a semiconductor and a soldering portion for connection to external parts, in which the bump portion has a pre-solder formed using a tin or tin alloy electroplating process. According to this invention, the pre-solder, which is formed by reflow using an electroplating process, permits easy increase of the height thereof to thus enhance bondability and underfilling capability, may be formed to a desired thickness by controlling a plating thickness, and furthermore, may be applied to a fine pitch through a masking process.
Abstract:
With a semiconductor package according to an aspect of the present invention comprising a board having circuit lines, solder resist formed on a surface of the board, and a chip mounted on the board and having at least one bump attached to at least a portion of the circuit lines, where the solder resist comprises a perimeter groove, which exposes at least a portion of the circuit lines, and an extension groove, which is connected to the perimeter groove, and where encapsulant is filled in the perimeter groove and the extension groove, the filling characteristics of the encapsulant is improved for greater reliability in the electrical connections between the chip and the board.
Abstract:
With a semiconductor package according to an aspect of the present invention comprising a board having circuit lines, solder resist formed on a surface of the board, and a chip mounted on the board and having at least one bump attached to at least a portion of the circuit lines, where the solder resist comprises a perimeter groove, which exposes at least a portion of the circuit lines, and an extension groove, which is connected to the perimeter groove, and where encapsulant is filled in the perimeter groove and the extension groove, the filling characteristics of the encapsulant is improved for greater reliability in the electrical connections between the chip and the board.
Abstract:
A printed circuit board is disclosed. The printed circuit board, which has at least one pad on which a solder ball is to be placed, includes a solder resist that covers a surface of the printed circuit board, an opening part that exposes the pad and supports the solder ball, and an extended portion formed in a perimeter of the opening part that allows an underfill to flow in between the printed circuit board and the solder ball. With this printed circuit board, the underfill can be filled in more readily between the printed circuit board and the solder balls, when mounting a component on the printed circuit board.
Abstract:
A manufacturing method of a package substrate is disclosed. The method for manufacturing a package substrate is by forming a bump on a bump pad in a core board, where a first circuit pattern including the bump pad is formed on one surface, a second circuit pattern electrically connected with the first circuit pattern is formed on the other surface, and a dielectric layer is selectively coated on the one surface such that the bump pad is exposed. The method includes layering a conductive layer on the other surface of the core board, coating a plating resist on the conductive layer, forming the bump by supplying electricity to the conductive layer to electroplate the bump pad, and removing the plating resist and the conductive layer. This makes it possible to omit the coining process and increase the density of the circuit by forming a fine bump by an electro tin plating method with small plating thickness deviation without designing additional plating bus lines, and improves the electrical performance without remaining plating bus lines.