Abstract:
An electronic substrate and an electronic device are provided. The electronic substrate includes a base, a conductive electrode, and a first layer. The conductive electrode and the first layer are disposed on the base, the first layer surrounds the conductive electrode and overlaps an edge portion of the conductive electrode. In a cross-sectional view, the first layer is divided into a first part and a second part, the conductive electrode is located between the first part and the second part, and a width of the first part is different from a width of the second part.
Abstract:
A semiconductor module includes a semiconductor device having a first land, a second land, and a third land, a wiring board having a substrate, and a fourth land, a fifth land, and a sixth land disposed on the main surface of the substrate, a chip component having a first electrode and a second electrode disposed across a distance in the longitudinal direction and being disposed between the wiring board and the semiconductor device, a first solder joint for bonding the first land, the fourth land, and the first electrode, a second solder joint for bonding the second land, the fifth land, and the second electrode, and a third solder joint for bonding the third land and the sixth land. The volume of the first solder joint and the volume of the second solder joint are each larger than the volume of the third solder joint.
Abstract:
Embodiments are generally directed to module installation on printed circuit boards with embedded trace technology. An embodiment of a printed circuit board includes one or more layers including a top layer; multiple embedded traces that are contained in an area of a surface of a first layer of the one or more layers of the printed circuit board; and a first module, the first module being installed on the plurality of printed traces in the area.
Abstract:
A wiring board according to the present disclosure includes an insulating substrate having a semiconductor-element mount portion, a constant-voltage-regulator mount portion, and an external connection surface; semiconductor-element connection pads; constant-voltage-regulator connection pads; external connection pads; and wiring conductors including a wiring conductor for signal connected to the semiconductor-element connection pad for signal in an outer peripheral portion of the insulating substrate and extending in the insulating substrate from an area below the semiconductor-element mount portion to the outer peripheral portion. The wiring conductor for signal extends on a surface of a build-up insulating layer of the insulating substrate, on which the solid conductor for grounding or for power supply extends, to the outer peripheral portion without passing through an area below an intermediate portion between the semiconductor-element mount portion and the constant-voltage-regulator mount portion.
Abstract:
[Problem to be Solved]A multilayer flexible printed circuit board having a strip line advantageous to folding is provided.[Solution]A multilayer flexible printed circuit board 100 of an embodiment is a multilayer flexible printed circuit board having a strip line foldable at a folding part F1, the board including: a flexible insulative substrate 30; an inner layer circuit pattern 5 provided inside the flexible insulative substrate 30 and including a signal line 6 extending in a predetermined direction; a ground thin film 14a constituting a ground layer at least in the folding part F1 out of a ground layer of the strip line and constituted of a nonelectrolytic plating coat 14 formed on the flexible insulative substrate 30; and a protective layer 20 that covers the ground thin film 14a and is in close contact with an exposed part 19 from which the flexible insulative substrate 30 is exposed.
Abstract:
There is provided an electronic component module capable of increasing the degree of integration by mounting electronic components on both surfaces of a substrate. The electronic component module according to an exemplary embodiment of the present disclosure includes a first substrate having one surface on which at least one electronic component is mounted; and a second substrate bonded to one surface of the first substrate and including at least one component accommodating part in which the at least one electronic component is accommodated, wherein the second substrate includes a core layer, and metal wiring layers formed on both surfaces of the core layer and having a plurality of electrode pads.
Abstract:
A printed board unit includes: a base material; an electrode formed on the base material; a resist film formed on the base material, the resist film has an opening to expose the electrode; a recess part formed on an inner wall of the resist film; an electronic component including a lead terminal electrically coupled to the electrode; and a bonding material which bonds the lead terminal to the electrode in the opening, a portion of the bonding material being mounted on the lead terminal at an inner side of the opening opposite to the recess part.
Abstract:
Disclosed herein are a coreless board for a semiconductor package and a method of manufacturing the same. The coreless board for the semiconductor package includes: a support; a build-up layer formed on the support; an external connection terminal formed on the build-up layer; and a solder resist layer formed on the build-up layer so as to expose the external connection terminal.
Abstract:
An electronic control device includes a substrate, a plurality of component-mounted wires, a plurality of electronic components, a common wire, an interrupt wire and a protective layer. The component-mounted wires and the common wire are disposed on the substrate. The electronic components are mounted on the respective component-mounted wires and are coupled with the common wire. The interrupt wire is coupled between one component-mounted wire and the common wire, and is configured to melt in accordance with heat generated by an overcurrent to interrupt a coupling between the component-mounted wire and the common wire. The protective layer covers a surface of the substrate including the interrupt wire and defines an opening portion so that at least a portion of the interrupt wire is exposed.
Abstract:
A flexible Printed Circuit (PC) board, junction method thereof and battery pack using the flexible PC board prevents cracking of terminal units of a flexible PC board and reducing degradation thereof due to deformation by increasing its tensile strength. The flexible PC board has a multi-layered structure including wiring with terminal units, a first insulating layer and a second insulating layer arranged both over and under the wiring. An end of the second insulating layer is arranged between an end of the terminal units and an end of the first insulating layer.